Cho phương trình: x2 - 2(m - 1)x - 3 = 0 (1)
CMR pt (1) luôn có 2 nghiệm phân biệt x1, x2 với mọi giá trị m. Tìm m thoả mãn:
\(\dfrac{x_1}{x^2_2}+\dfrac{x_2}{x^2_1}=m-1\)
Cho phương trình: \(x^2\) - mx + 2m - 4 =0 (1) (với là ẩn, mlà tham số).
a) Tìm m để phương trình có nghiệm x = 3. Tìm nghiệm còn lại.
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1; x2 thoả mãn: \(x^2_1\) + m\(x_2\) = 12.
Cho phương trình \(x^2-\left(m+1\right)x+m-4=0\)
m là tham số
a) Giair pt khi m=1
b) Tìm giá trị của m để pt có 2 nghiệm \(x_1,x_2\)thỏa mãn
(\(x^2_1\)\(-mx_1\)\(+m\))(\(x^{2_2}-mx_2+m\))=2
Cho phương trình:
\(4x^2+\left(m^2+2m-15\right)x+\left(m+1\right)^2-20=0\) (m là tham số)
Tìm m để phương trình trên có 2 nghiệm thoả mãn:
\(x^2_1+x_2+2019=0\)
Câu 1: Cho phương trình \(x^2-2\left(m+4\right)x+m^2+8m-9=0\)
(Với m là tham số)
a)Tìm các giá trị nguyên của m để phương trình trên có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^2+x_2^2-48}{x_1^2+x^2_2}\) nguyên.
Cho Phương Trình: \(x^2\)-2mx-m=0 (1). Xác định m để phương trình (1) có 2 nghiệm \(_{x_1}\),\(x_2\) thỏa mãn : \(x^2_1\)+2m\(x_2\)+19(m+1)=0
Cho \(x^2-2x+m-1=0\)
Tìm m để phương trính có 2 nghiệm phân biệt \(x_1,x_2\) thõa mãn: \(2x_1x_2+x_2=\sqrt{x^2_1+2x_2}\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)