\(\Delta=5^2-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm thì \(\Delta\ge0\Leftrightarrow33-4m\ge0\Leftrightarrow m\le\dfrac{33}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=2\\ \Leftrightarrow x_1+x_2-2=2\left(x_1x_2-x_2-x_1+1\right)\\ \Leftrightarrow-5-2=2x_1x_2-2\left(x_1+x_2\right)+2\\ \Leftrightarrow2\left(m-2\right)-2.\left(-5\right)+2+7=0\\ \Leftrightarrow2m-4+10+2+7=0\\ \Leftrightarrow2m+15=0\\ \Leftrightarrow m=-\dfrac{15}{2}\left(tm\right)\)
\(x^2+5x+m-2\left(1\right)\)
PT (1) là PT bậc 2 có: \(\Delta=5^2-4.\left(m-2\right)=33-4m\)
Để PT có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)
Theo định lý Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{5}{1}=-5\\x_1.x_2=\dfrac{c}{a}=\dfrac{m-2}{1}=m-2\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=2\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)-2}{x_1.x_2-\left(x_1+x_2\right)+1}=2\Leftrightarrow\dfrac{-5-2}{m-2-\left(-5\right)+1}=2\)
\(\Leftrightarrow\dfrac{-7}{m+4}=2\Leftrightarrow m+4=-\dfrac{7}{2}\Leftrightarrow m=-\dfrac{15}{2}\)
\(\Delta=25-4\left(m-2\right)=33-4m>0\Rightarrow m< \dfrac{33}{4}\)
Để biểu thức đề bài xác định \(\Rightarrow\) pt có nghiệm khác 1
\(\Rightarrow1+5+m-2\ne0\Rightarrow m\ne-5\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\Leftrightarrow\dfrac{x_1+x_2-2}{\left(x_1-1\right)\left(x_2-1\right)}=2\)
\(\Leftrightarrow\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)
\(\Rightarrow x_1+x_2-2=2x_1x_2-2\left(x_1+x_2\right)+2\)
\(\Leftrightarrow-5-2=2\left(m-2\right)-2.\left(-5\right)+2\)
\(\Leftrightarrow m=-\dfrac{15}{2}\) (thỏa mãn)