cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)
a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
câu 1 cho phương trình bậc 2 có ẩn x:\(x^2-2mx+2m-1=0\)
1)chứng tỏ phương trình có nghiệm \(x_1;x_2\) với mọi m
2)chứng minh\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\)
a)chứng minh \(A=8m^2-18m+9\)
b)tìm m để A đạt giá trị nhỏ nhất
Cho phương trình \(x^{^2}-2\left(m+1\right)x+3m=0\) m là tham số
a) Chứng tỏ phương trình có hai nghiệm thỏa\(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\)
b) Gọi \(x_1,x_2\) là hai nghiệm của phương trình. Tìm giá trị của m để biểu thức :
\(A=x_1^2+x_2^2-6x_1x_2\) đạt gia trị nhỏ nhất
Cho phương trình \(x^2-2\left(m-3\right)x-2\left(m-1\right)=0\)
a) Chứng minh : phương trình luôn có 2 nghiệm phân biệt với mọi m .
b) Gọi \(x_1,x_2\)là các nghiệm của phương trình . Tìm giá trị nhỏ nhất của \(x_1^2+x_2^2\)
Cho phương trình \(x^2-2\left(m+1\right)x+2m-3=0\) . Tìm các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn biểu thức \(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|\)đạt giá trị nhỏ nhất
a) gọi \(x_1,x_2\) là nghiệm của phương trình: \(x^2-2\left(m+1\right)x+4m-m^2=0\).Tìm giá trị nhỏ nhất của P=\(\left|x_1-x_2\right|\)
Cho phương trình \(x^2+\left(1-4m\right)x+4m^2-2m=0\) với m là tham số. Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\left(x_1< x_2\right)\) sao cho \(\left|x_1\right|-3\left|x_2\right|=0\)