Cho phương trình x 2 – (2m + 1)x + m 2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m ∈ ℤ để phương trình có hai nghiệm phân biệt x 1 ; x 2 sao cho biểu thức P = x 1 x 2 x 1 + x 2 có giá trị là số nguyên
A. m = 1
B. m = 2
C. m = −2
D. m = 0
Cho phương trình x 2 − ( 2 m + 5 ) x + 2 m + 1 = 0 (1), với x là ẩn, m là tham số.
a. Giải phương trình (1) khi m= - 1 2
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt x 1 , x 2 sao cho biểu thức P = x 1 − x 2 đạt giá trị nhỏ nhất.
Bài 3 (2,5 điểm)
Cho phương trình -x+(2m - 1)x + m – m^2 =0 (1) (với m là tham số).
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt. Tìm hai nghiệm đó khi m = 2.
b) Tìm tất cả các giá trị của m sao cho x1 (1-2x2)+x2(1-2x1)= mo, với x1 và x2, là hai nghiệm của phương trình (1).
c) Với X1 và X2 là hai nghiệm của phương trình (1), chứng minh rằng với mọi giá trị của m ta luôn có x1 - 2x1x2 + x2 < hoặc =1
Mong các bạn giúp mik!
Cho phương trình \(x^2-2x+2-m=0\left(1\right)\) (với m là tham số)
a) Tìm các giá trị của m để phương trình (1) có 2 ngiệm trái dấu
b) Tìm giá trị của m để phương trình (1) có 2 nghiệm phân biệt x1,x2 sao cho /x1 - x2/ = 1 (/ là trị tuyệt đối)
Cho phương trình
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)
Tìm các giá trị của m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn \(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{5}\)
Tìm tất cả giá trị của tham số m sao cho phương trình x² – (2m + 1)x+m²+1=0 có hai nghiệm phân biệt x1,x2, thỏa mãn (x1 + 1)² + (x2+1)² = 13.
Cho phương trình x2 - (m +1)x +2m -8 =0 (1), m là tham số.
a) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn x12 + x22 + ( x1 - 2)(x2 -2) =11
Cho phương trình \(x^2-\left(m+1\right)x+2-8=0\) (1), m là tham số.
a) giải phương trình (1) khi m=2.
b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn
\(x^2_1+x_2^2+\left(x1-2\right)\left(x2-2\right)=11\)
cho phương trình \(x^2-2x+m-1=0\), với m là tham số. Tìm các giá trị của m để phương trinh trên có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)