Trước hết áp dụng Viete ta có \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=3\end{matrix}\right.\). Khi đó:
\(A=\sqrt{11x_1+1}+\sqrt{13x_2+6}=\sqrt{7x_1+\left(4x_1+1\right)}+\sqrt{7x_2+\left(6x_2+6\right)}=\sqrt{x_1^2+3+\left(4x_1+1\right)}+\sqrt{x_2^2+3+\left(6x_2+6\right)}=\sqrt{\left(x_1+2\right)^2}+\sqrt{\left(x_2+3\right)^2}=x_1+x_2+5=12\)