Cho phương trình:
x2 - 2mx - 4m - 5 = 0 (m là tham số)
Tìm m để phương trình có nghiệm thoả mãn hệ thức:
\(\dfrac{1}{2}x_1^2-\left(m-1\right)x_1+x_2-2m+\dfrac{33}{2}=762019\)
Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1}\)=2\(\sqrt{x_2}\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
1, cho phương trình ẩn x ; x2 - 5x + m - 2 = 0 ( 1) (m là tham số )
a, giải phương trình ( 1) với m = 6
b. tìm m để phương trình ( 1) có 2 nghiệm phân biệt x1 .x2 thỏa mãn hệ thức\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)
\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)
Cho phương trình: \(x^2\) - mx + 2m - 4 =0 (1) (với là ẩn, mlà tham số).
a) Tìm m để phương trình có nghiệm x = 3. Tìm nghiệm còn lại.
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1; x2 thoả mãn: \(x^2_1\) + m\(x_2\) = 12.
Cho phương trình x2 - (m + 1)x + m + 4 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1 , x2, thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
Cho phương trình: x2 - (m + 2).x + 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1.x_2}{4}\)
cho phường trình:\(^{x^2-2mx+2m-4=0}\) (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt \(_{x_1,x_2}\) thỏa mãn \(x_1+2x_2=8\)
cho phương trình \(x^2-2x+m-1=0\), với m là tham số. Tìm các giá trị của m để phương trinh trên có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)