cho hàm số y = a/x ; a) xác định hệ số a biết đồ thị của nó đi qua điểm (-2;2) , b) vẽ đò thị hàm số đó và đường thẳng y = 2 trên cùng 1 hệ trục tọa độ Oxy ( đồ thị hàm số là đường cong hypebol) c) dựa vào đồ thị để tìm các giá trị của x sao cho 1/x<-2
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x+3y-2z+2=0 và đường thẳng d: x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B và C(a;b;c) sao cho C là trung điểm của AB. Giá trị của biểu thức a+b+c bằng
A. -5
B. -12
C. -15
D. 11
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng, d 1 : x - 4 1 = y + 2 4 = z - 1 - 2 , d 2 = x - 2 1 = y + 1 - 1 = z - 1 1 . Viết phương trình đường thẳng d đi qua A, vuông góc với đường thẳng d 1 và cắt đường thẳng d 2 .
A. d : x - 4 4 = y + 1 1 = z - 3 4
B. d : x - 1 2 = y + 1 1 = z - 3 3
C. d : x - 1 2 = y + 1 - 1 = z - 3 - 1
D. d : x - 1 - 2 = y + 1 2 = z - 3 3
Cho đồ thị hàm số y = 2 x là đồ thị ( C 1 ) như hình vẽ, ( C 2 ) là đồ thị đối xứng của ( C 1 ) qua trục Oy. Một đường thẳng d song song với Oy cắt đồ thị ( C 1 ), ( C 2 ) tại 2 điểm A, B như hình vẽ có tung độ lần lượt là a, b. Giá trị nhỏ nhất của biểu thức P = 4 a 3 + b 3 - 3 a + b 2 a + 2 b - 3 là
A. 14
B. 0
C. 4
D. - 2
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Cho d là đường thẳng đi qua điểm A - 1 ; 3 và có hệ số góc m. Gọi S là tập hợp các giá trị của tham số m để đường thẳng d cắt đồ thị C của hàm số y = x 3 - 3 x + 1 tại ba điểm phân biệt A, B, C sao cho tiếp tuyến với đồ thị tại B và C cắt nhau tại điểm I nằm trên đường tròn đường kính BC. Tính tổng bình phương các phần tử thuộc tập hợp S.
A. 16 9
B. 34 9
C. 38 9
D. 34 3
Trong không gian Oxyz, cho các điểm A(1; –1;1); B(–1;2;3) và đường thẳng d: x + 1 - 2 = y - 2 1 = z - 3 3 . Đường thẳng ∆ đi qua điểm A, vuông góc với hai đường thẳng AB và d có phương trình là:
A. x - 1 2 = y + 1 4 = z - 1 7
B. x - 1 7 = y - 1 2 = z - 1 4
C. x - 1 2 = y + 1 7 = z - 1 4
D. x - 1 7 = y + 1 2 = z - 1 4
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P):x - 2y + 2z - 5 = 0. Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = ( 1 ; b ; c ) khi đó b c bằng
A. b c = 11
B. b c = - 11 2
C. b c = - 3 2
D. b c = 3 2