Lời giải:
a) Gọi \((x_o,y_o)\) là tọa độ điểm cố định mà $(d)$ đi qua
Khi đó \(y_o=mx_o+1\) phải luôn đúng với mọi \(m\in\mathbb{R}\)
\(\Rightarrow \left\{\begin{matrix} x_o=0\\ 1-y_o=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_o=0\\ y_o=1\end{matrix}\right.\)
Vậy $(d)$ luôn đi qua điểm cố định $(0;1)$
b) Vì hai điểm $A,B$ thuộc đồ thị \(y=x^2\) nên tung độ của chúng luôn lớn hơn hoặc bằng $0$. Do đó, $A,B$ luôn nằm cùng phía so với $Ox$, chắc bạn nhầm với $Oy$ rồi.
Phương trình hoành độ giao điểm \(x^2-mx-1=0\)
Ta có \(\Delta=m^2+4>0\) nên phương trình luôn có hai nghiệm phân biệt, tức là $(d)$ cắt $(P)$ tại hai điểm phân biệt $x_1,x_2$ thỏa mãn \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=-1\end{matrix}\right. (1)\).
Vì \(x_1x_2=-1<0\Rightarrow x_1,x_2\) trái dấu. Do đó $A,B$ nằm khác phía so với $Oy$
c) Theo $(1)$ ta có: \(AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(x_1-x_2)^2+(mx_1-mx_2)^2}=\sqrt{(m^2+1)(m^2+4)}\)
Và \(d(O,AB)=\frac{|1|}{\sqrt{m^2+1}}\)\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=2\Leftrightarrow \sqrt{m^2+4}=4\)
\(\Leftrightarrow m=\pm\sqrt{12}\)