\(đkx\ge0\\ P=\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\\ =1+\dfrac{5}{\sqrt{x}+2}\)
=> \(\sqrt{x}+2\inƯ\left(5\right)\)
mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
=> \(x=9\left(thoamanđk\right)\)
Vậy \(x=9\) thì P nguyên
`P = 1 + 5/(sqrt x + 2)`
Nếu `sqrt x in II -> 5/(sqrt x + 2)` không thể nguyên.
`-> sqrt x in ZZ -> x` chính phương.
`-> 5/(sqrt x + 2) in ZZ`.
`-> 5 vdots sqrt x + 2`
`-> sqrt x + 2 in Ư(5)`
`-> sqrt x in {-1, -3, 3, -7}`
`-> x = 9`.
`P=[\sqrt{x}+7]/[\sqrt{x}+2]`
`P=[\sqrt{x}+2+5]/[\sqrt{x}+2]`
`P=1+5/[\sqrt{x}+2]`
Để `P in ZZ<=>1+5/[\sqrt{x}+2] in ZZ`
`=>5/[\sqrt{x}+2] in ZZ`
`=>\sqrt{x}+2 in Ư_5`
Mà `Ư_5={+-1;+-5}`
`@\sqrt{x}+2=1=>\sqrt{x}=-1` (Vô lí)
`@\sqrt{x}+2=-1=>\sqrt{x}=-3` (Vô lí)
`@\sqrt{x}+2=5=>\sqrt{x}=3=>x=9` (t/m)
`@\sqrt{x}+2=-5=>\sqrt{x}=-7` (Vô lí)
Vậy `x=9`