Cho d : x - 1 1 = y + 1 - 1 = z - 2 và P : 2 x + y - z - 1 = 0 . Gọi (d') là hình chiếu vuông góc của (d) xuống (P). Tính góc α giữa (d), (d').
Cho (P): x + z + 2 = 0; d : x - 1 1 = y - 3 - 2 = z + 1 2 . Tính góc α giữa (d) và (P).
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y - 1 - 2 = z + 1 3 và mặt phẳng ( α ) : - x + 2 y - 3 z = 0 . Gọi ρ là góc giữa đường thẳng d và mặt phẳng ( α ) . Khi đó, góc ρ bằng
A. 0 °
B. 45 °
C. 90 °
D. 60 °
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 1 2 = y + 1 − 1 = z 3 và mặt phẳng ( α ) : x + 5 y + z + 4 = 0. Xác định vị trí tương đối của d và ( α )
A. d ⊥ ( α ) .
B. d ⊂ ( α ) .
C. d cắt và vuông góc với α
D. d / / ( α ) .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = ( 1 ; a ; b ) là một vectơ chỉ phương của ∆ với a, b ∈ ℤ . Tính tổng a+b.
A. 0
B. 1
C. -1
D. -2
Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Cho mặt phẳng P : x + z + 2 = 0 và d : x - 1 1 = y - 3 - 2 = z + 1 2 . Gọi (d’) là hình chiếu vuông góc của (d) xuống (P). Tính góc giữa (d) và (d’).
Cho d : x - 1 1 = y + 1 - 1 = z - 2 ; p : 2 x + y - z - 1 = 0 . Gọi d’ là hình chiếu vuông góc của (d) xuống (p). Tính góc giữa (d, d’).
Cho mặt phẳng (P): x + y + 2z - 2 =0 và đường
thẳng (d): x + 2017 1 = y 2 = z - 2017 1 . Góc tạo bởi
(d) và (P) là α . Giá trị cot α là