Trong không gian với hệ trục tọa độ Oxyz, gọi α là góc hợp bởi đường thẳng d : x - 3 1 = y - 4 2 = z + 3 - 1 và mặt phẳng (P): 2x+y+z-1=0. Khi đó, giá trị cos α bằng bao nhiêu
A. - 1 2
B. - 3 2
C. 3 2
D. 1 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = ( 1 ; a ; b ) là một vectơ chỉ phương của ∆ với a, b ∈ ℤ . Tính tổng a+b.
A. 0
B. 1
C. -1
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Trong không gian với trục tọa độ Oxyz, cho đường thẳng
∆ : x - 1 2 = y - 1 = z + 2 3 và mặt phẳng ( α ): x-2y+2z-3=0.
Đường thẳng đi qua O, vuông góc với ∆ và song song với
mặt phẳng ( α ) có phương trình
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = 1 ; a ; b là một vectơ chỉ phương của ∆ với a , b ∈ ℤ . Tính tổng a+b
A. 0
B. 1
C. - 1
D. - 2