Cho (O) đường kính AB=8cm . Trên cung AB lấy C : dây BC =4\(\sqrt{3}\) . Tiếp tuyến tại A cắt BC tại D . Vẽ dây AE // BC
a) Tính góc BAC và BD
b) C/m ACBE là hình chữ nhật
c) Tính S ABE
Cho (O;R) , đường kính AB trên tiếp tuyến tại A của(O;R). Lấy điểm C sao cho AC=2R. Gọi D là giao điểm của BC với (O).
a)C/m AD là trung tuyến của tam giác ABC
b)Vẽ dây cung AE vuông góc với OC tại H. C/m CE là tiếp tuyến của (O)
c) Đường thẳng BE cắt OD tại F. Tính góc OFB
d)Gọi K là hình chiếu của E xuống AB, M=EK cắt BC. C/m ME=MK
Cho đường tròn (O;R) đường kính AB. Trên tiếp tuyến tại A của (O;R) lấy điểm C sao cho AC = 2R. Gọi D là giao điểm của BC và đường tròn (O)
a) CM: AD là đường cao và cũng là đường trung tuyến của ΔABC
b) Vẽ dây cung AE vuông góc với OC tại H. CM:CE là tiếp tuyến của đường tròn (O;R)
c) Đường thẳng BE cắt đường thẳng OD tại F. Tính tanOBF và suy ra số độ của góc OFB
d) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Tính độ dài các đoạn thẳng ME và MK theo R
cho (o,r) đường kính ab, trên tiếp tuyến tại a của (o) lấy c sao cho ac = 2r. gọi d là giao điểm của bc và (o)
a, chứng minh ad là đường cao cũng là đường trung trực của tam giác abc
b, vẽ dây cung ae vuông góc dc tại h, chứng minh ce là tiếp tuyến của (o)
c đường thẳng be cắt od tại f, tính tan ofb, từ đó suy ra số đo góc ofb
cho đường tròn O và dây BC=\(\sqrt{ }\)2. các tiếm tuyến tại B và C cắt nhau tại A. M là một điểm trên cung nhỏ của BC. tiếp tuyến tại M cắt AB ,AC tại D,E
a)CM tứ giác ABOC là hình vuông
b) tính góc DOE
c) tính R theo chu vi của tam giác ADE
Cho đường tròn tâm O đường kính AB=2R. Vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC(E khác B và C), AE cắt CD tại F
a) Chứng minh tứ giác BEFL nội tiếp trong một đường tròn
b) Tính độ dài cạnh AC theo R và góc ACD khi góc BAC=60độ
c) Chứng minh khi điểm E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CEF luôn thuộc một đường thẳng cố định
Cho đường tròn (O;R) và dây cung BC sao cho góc BOC = 90 độ. Tiếp tuyến với đường tròn tại B và C cắt nhau ở A. Trên cung nhỏ BC lấy điểm I, qua I vẽ tiếp tuyến với đường tròn cắt AB, AC lần lượt tại M và N.
a) Chứng minh tứ giác ABOC là hình vuông
b) OM, ON cắt BC lần lượt tại H và K. Chứng minh tứ giác OHNC nội tiếp
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD