cho 2 đường tròn (O\(_1\)), (O\(_2\)) tiếp xúc ngoài. đường thẳng d tiếp xúc với 2 đường tròn (O\(_1\)), (O\(_2\)) lần lượt tại A, B. vẽ đường tròn (O) tiếp xúc với đường tròn (O\(_1\)) và (O\(_2\)) và tiếp xúc với đường thẳng d tại C. gọi bán kính các đường tròn (O),(O\(_1\)), (O\(_2\)) lần lượt là R, R\(_1\), R\(_2\). cmr
\(\frac{1}{\sqrt{R}}=\frac{1}{\sqrt{R_1}}+\frac{1}{\sqrt{R_2}}\)
Cho điểm A nằm ngoài đường tròn (O;R). Từ A kẻ đường thẳng d ko đi qua tâm O cắt đường tròn (O;R) tại B và C (b nằm giữa A và C). Các tiếp tuyến vs đường tròn (O) tại B và C cắt nhau tại D. Từ D kẻ DH vuông góc vs AO (H thuộc AO) cắt cung nhỏ BC tại M. Gọi E là giao điểm của DO và BC.
a.CM D, H, O, C cùng thuộc một đường tròn.
b. CM OH.OA=OE.OD
c CM AM là tiếp tuyến vs đường tròn (O;R)
(Giúp mik làm phần c ạ - Thanks)
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho đường tròn (O;R) và các tiếp tuyến AB ;AC cắt nhau tại A nằm ngoài đường tròn ( B;C là các tiếp điểm ) . Gọi H là giao điểm của BC và OA
a) CMR: Oa vuông góc với BC và OH.OA=R^2
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuuong góc với BD ( K thuộc BD) CMR AO sông song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK . CMR tam giác BIK và tam GIác CHK có diện tích bằng nhau
Cho đường tròn (O,R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB , AC với (O) ( B, C là 2 tiếp điểm )
a, Gọi D là giao điểm của đoạn thẳng OA với (O) . Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD . Chứng minh C,O,E thẳng hàng và EF là tia phân giác góc CED
b, Vẽ đường tròn (A, AD). Gọi I,J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) ( I,J khác D). Chứng minh góc CEF = góc JID
c, Tính độ dài đoạn thẳng OA theo R để tứ giác EFIJ là hình bình hành
Cho em hỏi bài này giải sao vậy ạ
cho điểm A nằm ngoài đường tròn (O) từ A kẻ tiếp tuyến AB đến đường thẳng (B là tiếp điểm kẻ dây BC vuông góc OA tại H)
a/C/m AC là tiếp tuyến của đường tròn (O)
b/Từ B kẻ Bx // OA cắt (O) tại D(D khác B).C/m CD là đường kính đường tròn (O).
c/kẻ BI vuông góc CD tại I.C/m 4HO . HA=CI .CD
d/ gọi K là giao điểm của AD và BI.C/m K là trung điểm BI
Em không biết làm câu cuối
Cho ( O,R ), lấy điểm A cách O khoảng bằng 2R . kẻ các tiếp tuyến AB và AC với đường tròn (B,C là các tiếp điểm ) . Đoạn thẳng OA cắt đường tròn tâm (O) tại I. Đường thẳng O và vuông góc với OH cắt AC tại K. .
a) CM tam giác OKA cân tại A.
b) đường thẳng AKI cắt AH tại M. CM KM là tiếp tuyến của đường tròn (O)
Cho nửa đường tròn tâm (O) đường kính BC, A là một điểm thuộc nửa dduwwowngf tròn (A khác B,C). Từ A kẻ tiếp tuyến d với đường tròn tâm (O). Kẻ BH,CK cùng vuông góc với d (H,K thuộc d)
a)CM: đường tròn đường kính HK tiếp xúc BC
b) Xác định vị trí của điểm A trên nửa đường tròn để diện tích tứ giác BHKC có diện tích lớn nhất. Tính diện tích lớn nhất đó theo BC
c) Gọi M là tiếp điểm của BC với đường tròn đường kính HK.CM: khi M nằm giữa B và O thì \(\widehat{MAO}=\frac{\cot\widehat{ACB}-\cot\widehat{ABC}}{2}\)
cho nửa đường tròn (O ; R), đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn ( M khác A và B) kẻ tiếp tuyến thứa 3 cắt các tiếp tuyến tại A và B lần lượt tại C và D . Chứng minh
a) CD = CA + DB
b) Tam giác COD là tam giác vuông
c) AB là tiếp tuyến của đường tròn đường kính CD
giúp mk với