Cho nửa đường tròn tân O , đường kính BC= 2R và một điểm A trên nửa đường tròn ấy sao cho BA= R ,M là điểm trên cung AC . MB cắt AC tại I tia BA cắt CM tai D.
a) chứng minh : tam giác AOM đều .
b)chứng minh tứ giác AIMD nội tiếp đường tròn
c) tính diện tích hình quạt ADC theo R .
d) tính góc ADI=?.
e) cho góc ABM= 45 độ . Tính độ dài đoạn thẳng AD theo R.
Cho nửa đường tròn (O;R), đường kính BC và điểm A thuộc nửa đường tròn, M là điểm trên cung nhỏ AC, 2 đoạn thẳng cắt nhau tại I, tia BA cắt CM tại D a)CM tứ giác AIMD nội tiếp b)CM AI.AC=BI.IM c)CM góc ADI = nửa góc AOB Mn giúp mình với mai thi giữa kì rồi ạ !!!!!!
Cho nửa đường tròn tâm O đường kính AB lấy điểm c thuộc nửa đường tròn sao cho AC = R.căn2. N là một điểm trên cung nhỏ BC AN cắt BC tại I tia AC cắt BN tại D a. ACO là tam giác gì b . tính độ dài BC theo R c. Tính số đo góc BAC và số đo góc CDI
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa mật phắng chứa nửa đường tròn tâm O có bờ là AB vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a. Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b. Chứng minh: MA2 = MD.MB
c. Vẽ CH vuông góc với AB (H ∈ AB). Chứng minh rằng MB đi qua trung điểm của CH
cho nửa đường tròn tâm O đường kính AB bằng 2r gọi C và D là hai điểm trên nửa đường tròn sao cho C thuộc cung AD và góc COD bằng 120 độ AD cắt BC tại E AC cắt BD tại F .chứng minh rằng:
a/ 4 điểm CDEF cùng thuộc một đường tròn
b/ tính r đường tròn đi qua CDEF qua r
Bài 4: Cho nửa đường tròn (O; R) đường kính AB. Điểm C di động trên nửa đường tròn (C khác A, B), gọi M là điểm chính giữa cung AC, BM cắt AC tại H và cắt tia tiếp tuyến Ax của nửa đường tròn (O) tại K, AM cắt BC tại D. a) Chứng minh tứ giác DMHC nội tiếp và HM. HB = HA.HC b) Chứng minh ABD cân đỉnh B c) Chứng minh KD là tiếp tuyến của (B; BA). d) Tứ giác AKDH là hình gì? Vì sao? e) Đường tròn ngoại tiếp BHD cắt đường tròn (B; BA) tại N. Chứng minh A, C, N thẳng hàng.
Cho nửa đường tròn tâm o bán kính BC. A nằm trên nửa đường tròn M là một điểm trên cung AC BM cắt AC tại i tia BA cắt BM tại i chứng ming rằng
a. Tứ giác AIMD nội tiếp đường tròn
b. Góc AID bằng góc AOM