Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Chứng minh rằng MN = AM + BN
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Tính số đo góc MON
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Chứng minh rằng AM.BN = R 2 (R là bán kính của nửa đường tròn)
Cho nửa đường tròn tâm O, đường kính AB. gọi Ax, By vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng 1 nửa mặt phẳng bờ AB). M là điểm bất kì thuộc Ax. Từ M kẻ tiếp tuyến với nửa đường tròn cắt By ở N.
a) Tính góc MON
b) Chứng minh MN = AM + BN
c) Chứng minh AM.BN = R^2 (R là bán kính của đường tròn O)
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB . Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. ( E là tiếp điểm)
a)tính góc MON
b) CMR: MN=AM+BN
c)CMR : AM.BN=R^2
d) gọi I là giao điểm của AM và BN, K là giao điểm của EI và AB .CMR: EI vuông góc với AB
cho nữa đường tròn đường kính AB. trên cùng 1 mặt phẳng bờ AB vẽ 2 tiếp tuyến Ax và By. gọi M là một điểm bất kì thuộc nữa đường tròn tâm O, tiếp tuyến tại M cắt Ax tại C, cắt By tại D
a, Cmr CD=AC+BD
b, tính góc COD
c,Cmr AB là tiếp tuyến của đường tròn đường kính CD
d, tìm giá trị của M để tứ giác ABCD có chu vi nhỏ nhất
cho nửa đường tròn tâm O đường kính AB. gọi Ax, Bx là tia vuông góc với AB(Ax, By và nửa đường tròn thuộc cùng một phẳng bờ AB) gọi M là điểm bất kỳ thuộc tia Ax, qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) tính số đo góc MON
b) chứng minh rằng MN=AM+BN
c) chứng minh rằng AM.BN=R2 (R à bán kính của nửa đường tròn)
cho nửa đường tròn tâm O đường kính AB. gọi Ax, Bx là tia vuông góc với AB(Ax, By và nửa đường tròn thuộc cùng một phẳng bờ AB) gọi M là điểm bất kỳ thuộc tia Ax, qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) tính số đo góc MON
b) chứng minh rằng MN=AM+BN
c) chứng minh rằng AM.BN=R2 (R à bán kính của nửa đường tròn)
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB