Phương án A sai vì khi M trùng với H thì SM = SH
Phương án B đúng vì khi M trùng với H thì SM = SH; khi M ≠ H thì SM > SH
Phương án C, D sai vì không bao giờ xảy ra trường hợp SM < SH
Đáp án B
Phương án A sai vì khi M trùng với H thì SM = SH
Phương án B đúng vì khi M trùng với H thì SM = SH; khi M ≠ H thì SM > SH
Phương án C, D sai vì không bao giờ xảy ra trường hợp SM < SH
Đáp án B
Cho điểm S không thuộc mặt phẳng (α) có hình chiếu trên (α) là điểm H. Với điểm M bất kì trên (α) và không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó.
Chứng minh rằng:
a) Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;
b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại, đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
Cho một điểm S có hình chiếu H trên mặt phẳng (P). Với hai điểm M và N trong (P) sao cho SM ≤SN, ta có:
A. điểm M bao giờ cũng khác điểm N
B. ba điểm M, N, H có thể trùng nhau
C. hai điểm M và N luôn khác điểm H
D. ba điểm M, N, H không thể trùng nhau.
Trong mặt phẳng (P) cho đường tròn (C) có đường kính AB = 2. Trên đường thẳng vuông góc với (P) tại điểm A, lấy điểm S sao cho SA = 5 Xét điểm M thay đổi trên (C), mặt phẳng α qua A vuông góc với SB, lần lượt cắt SB, SM tại H và K. Diện tích tam giác AHK đạt giá trị lớn nhất bằng
A. 5 9 B. 2 C. 4 5 D. 1
B. 2
D. 1
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh bằng 3, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H nằm trên đoạn thẳng AB sao cho AB=3AH,SH= 3 Khoảng cách từ C đến mặt phẳng (SAD) bằng
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a 2 . Hình chiếu của S trên mặt phẳng (ABCD) là trung điểm H của BC, SH = a 2 2 . Tính bán kính mặt cầu ngoại tiếp hình chóp S. BHD
A. a 2 2
B. a 5 2
C. a 17 4
D. a 11 4
cho hình chóp tứ giác S.ABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là 1 điểm trên cạnh SA. Tìm giao điểm của đường thẳng SM với mặt phẳng (BCD)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB =SH =a Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC).
A. cos α = 1 3
B. cos α = 2 3
C. cos α = 3 3
D. cos α = 2 3
Trên mặt phẳng (α) cho hình bình hành ABCD tâm O. Gọi S là một điểm nằm ngoài mặt phẳng (α) sao cho SA = SC, SB = SD. Chứng minh rằng:
a) SO ⊥(α)
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại với AB = a, BC = 2a.
Điểm H thuộc cạnh AC sao cho CH = 1 3 CA, SH là đường cao hình chóp S.ABC và SH = a 6 3 . Gọi I là trung điểm BC. Tính diện tích thiết diện của hình chóp S.ABC với mặt phẳng đi qua H và vuông góc với AI
A . 2 2 a 2 3
B . 2 a 2 6
C . 3 a 2 3
D . 3 a 2 6