Câu 48: Cho hàm số y=f(x) có đạo hàm liên tục trên R và \(f'\left(x\right)=x\left(2x-1\right)\left(x^2+3\right)+2\). Hàm số \(y=f\left(3-x\right)+2x+2023\) đồng biến trên khoảng nào trong các khoảng sau?
A: \(\left(-\infty;3\right)\)
B: (3;5)
C: (2;5/2)
D: (5/2;3)
Câu 50: Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=\left(x-1\right)^2\cdot\left(x^2-2x\right)\) với \(\forall x\in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(f\left(x^2-8x+m\right)\) có 5 điểm cực trị?
Cho hàm số \(f\left(x\right)\) có đạo hàm bằng \(f'\left(x\right)=x^2\left(x-1\right)^3\left(x-2\right)\) . Số điểm cực trị của hàm số \(f\left(x\right)\) bằng:
A.0 B.1 C.2 D.3
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm các giá trị của tham số m để \(y=-\dfrac{x^3}{3}+\left(m-2\right)x^2+\left(m-8\right)x+1\) nghịch biến trên R
Có bao nhiêu số nguyên a thuộc [-2018,2018] để hàm số y=\(\frac{1}{3}x^3+\frac{1}{2}\left(sina-cosa\right)x^2-\frac{1}{2}\left(sin2a\right)x+1\) đồng biến trên R
Cho \(f\left(x\right)=x^3-4x+1\).F(1)=3.Tìm F(5)
Cho \(f\left(x\right)=\dfrac{1}{x-1}\) và F(2)=1.Tìm F(x).
Cho hàm số y = \(|2x-x^2-\sqrt{\left(x+1\right)\left(3-x\right)}+b|\)Để giá trị lớn nhất của hàm số đạt giá trị nhỏ nhất thì giá trị của b thuộc khoảng nào
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(1-x\right)^2\left(3-x\right)^3\left(x-2\right)^4\) . Điểm cực tiểu của hàm số đã cho là
A: x = 2
B: x = 3
C: x = 0
D: x = 1
Ai có bảng biến thiên thì vẽ cho dễ hiểu
Cho hàm số: \(y=-x^3+3\left(m+1\right)x^2-\left(3m^2+7m-1\right)x+m^2-1.\)
Tìm giá trị thực của m để hàm số đạt cực tiểu tại một điểm có hoành độ nhỏ hơn 1.
Ai giải chi tiết giúp em với ạ.