Trong không gian với hệ tọa độ Oxyz, cho điểm M (2 ; 1 ; 0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
A . d : x = 2 + t y = 1 - 4 t z = - 2 t
B . d : x = 2 - t y = 1 + t z = t
C . d : x = 1 + t y = - 1 - 4 t z = 2 t
D . d : x = 2 + 2 t y = 1 + t z = - t
Cho d : x 1 = y - 1 - 1 = z 1 và P : x + y + z + 1 = 0 . Viết phương trình đường thẳng ∆ qua A 3 ; 1 ; - 2 , ∆ ∥ P , ∆ cắt (d).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 (P): x + 2y - 3z + 4 = 0. Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là
A. x = - 2 + 2 t y = 1 - t z = 1 + t
B. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t
Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y – 3 z + 4 = 0 . Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là:
A. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
B. x = - 3 + 2 t y = 1 - t z = 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t
Viết phương trình đường thẳng d đi qua A(1;2;4), song song với (P): 2x+y+z-4=0 và cắt đường thẳng ∆ : x - 2 3 = y - 2 1 = z - 2 5
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau: d đi qua A(2; -1; 3) và vuông góc với mặt phẳng (α): x + y – z + 5 = 0.
Cho các đường thẳng d 1 : x - 1 1 = y + 1 2 = z - 1 và d 2 : x - 2 1 = y 2 = z + 3 2 . Viết phương trình đường thẳng D đi qua A (1; 0; 2), cắt d1 và vuông góc với d2.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua điểm M, cắt và vuông góc với ∆ là