Trong không gian Oxyz, phương trình đường thẳng đi qua
A(1;2;4) song song với (P): 2x + y + z - 4 = 0 và cắt đường thẳng
d : x - 2 3 = y - 2 1 = z - 2 5 có phương trình:
A. x = 1 + t y = 2 z = 4 - 2 t
B. x = 1 + 2 t y = 2 z = 4 + 2 t
C. x = - 1 - 2 t y = 2 z = 4 + 4 t
D. x = 1 - t y = - 2 z = 2 t
Viết phương trình đường thẳng d qua A(1;2;3) cắt đường thẳng d 1 : x 2 = y 1 = z - 2 1 và song song với mặt phẳng (P): x+y-z-2=0
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm A(1;-1;2), song song với mặt phẳng (P): 2x-y-z+3=0, đồng thời tạo với đường thẳng △ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm A(1;-1;2), song song với mặt phẳng (P): 2x-y-z+3=0, đồng thời tạo với đường thẳng ∆ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là.
Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 và mặt phẳng (P):x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
Cho điểm A (1; 2; 3) và hai mặt phẳng (P) :2x + 2y + z +1 = 0, (Q) : 2x - y + 2z - 1 = 0. Phương trình đường thẳng d đi qua A song song với cả (P) và (Q) là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).