Chọn D
(Do E, F, G lần lượt là trung điểm của BC, BD, CD).
Do mặt phẳng (MNP) (BCD) nên
Chọn D
(Do E, F, G lần lượt là trung điểm của BC, BD, CD).
Do mặt phẳng (MNP) (BCD) nên
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho hình lăng trụ A B C . A ' B ' C ' có thể tích bằng a 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC . Tính thể tích V của khối tứ diện GMNP.
Cho hình lăng trụ ABCA'B'C' có thể tích bằng α 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
Cho tứ diện ABCD có BD=2. Hai tam giác ABD và BCD có diện tích lần lượt là 6 và 10. Biết thể tích khối tứ diện ABCD bằng 16. Tính số đo góc giữa hai mặt phẳng (ABD), (BCD).
Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm tam giác BCD. Tính thể tích V của khối chóp A.GBC.
A. V = 3
B. V = 4
C. V = 6
D. V = 5
Cho tứ diện ABCD có C D = a 2 , ∆ A B C là tam giác đều cạnh a, ∆ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A. 4 πa 3 3
B. πa 3 6
C. 4 πa 3
D. πa 3 3 2
Cho tứ diện ABCD có thể tích V. Gọi G là trọng tâm tam giác ADC. Tính thể tích khối chóp G.ABC theo V.
Cho tứ diện ABCD có CD=a 2 , ∆ ABC là tam giác đều cạnh a, ∆ ACD vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích khối cầu ngoại tiếp tứ diện ABCD bằng
Cho tứ diện ABCD. Gọi A,B',C' lần lượt là trọng tâm các tam giác BCD, ACD, ABD. Đặt A A ' → = a → , B B ' → = b → , C C ' → = c → . Mệnh đề nào sau đây đúng?