Cho hình lăng trụ A B C . A ' B ' C ' có thể tích bằng a 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC . Tính thể tích V của khối tứ diện GMNP.
Cho hình chóp đều S. ABCD có độ dài cạnh đáy bằng α . Gọi G là trọng tâm tam giác SAC . Mặt phẳng chứa AB và đi qua G cắt các cạnh SC, SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng 60 ° . Thể tích khối chóp S.ABCD bằng
Cho hình lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2 α . Thể tích của khối lăng trụ ABCA'B'C' bằng
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Mặt bên ABB’A’ có diện tích bằng a 2 3 . Gọi M; N lần lượt là trung điểm của A’B; A’C . Tính tỉ số thể tích của hai khối chóp A’. AMN và A’.ABC.
A. 1 2
B. 1 3
C. 1 4
D. 1 5
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = a 3 . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng 60 ∘ . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1 .
A. 1.
B. a.
C. a 2 .
D. a 3 .
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân có C A = C B = a . Gọi G là trọng tâm tam giác ABC. Biết thể tích của khối chóp G.A'B'C' bằng a 3 3 . Tính chiều cao h của hình lăng trụ đã cho.
Cho khối tứ diện ABCD có thể tích 2017. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A. 2017 9
B. 4034 81
C. 8068 27
D. 2017 27
Cho hình lăng trụ đứng A B C . A 1 B 1 C 1 có đáy ABC là tam giác vuông tại B, AB= 4, BC=6; chiều cao của lăng trụ bằng 10. Gọi K, M, N lần lượt là trung điểm của các cạnh B B 1 , A 1 B 1 , B C . Thể tích của khối tứ diện C 1 K M N là
A. 15.
B. 5.
C. 45.
D. 10.
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.