Đáp án D
Gọi I và E tương ứng là tâm hình vuông ABCD và tam giác SAB.
Đáp án D
Gọi I và E tương ứng là tâm hình vuông ABCD và tam giác SAB.
Cho khối chóp S.ABCD có đáy là hình vuông, Δ S A B đều và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84 π c m 2 . Khoảng cách giữa hai đường thẳng SA và BD là:
A. 2 21 7 c m .
B. 3 21 7 c m .
C. 21 7 c m .
D. 6 21 7 c m .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết rằng diện tích mặt cầu ngoại tiếp khối chóp S.ABCD là 4 π dm 2 Khoảng cách giữa hai đường thẳng SD và AC gần nhất với giá trị nào sau đây?
A. 2 7 d m
B. 3 7 d m
C. 4 7 d m
D. 6 7 d m
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi T là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Hỏi góc giữa hai đường thẳng TB và BD nằm trong khoảng nào dưới đây
A. 0 ; π 6
B. π 6 ; π 4
C. π 4 ; π 3
D. π 3 ; π 2
Cho hình chóp S.ABCD có đáy là hình vuông, BD = 2a. Tam giác SAC vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối cầu ngoại tiếp hình chóp S.ABCD là
A. 4 π a 3 3 .
B. 4 π a 3 3 .
C. π a 3 .
D. 4 π a 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
A. 3 πa 2
B. 5 πa 2
C. 6 πa 2
D. 10 πa 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BD bằng
A. a
B. a 2 2
C. a 21 7
D. a 21 14
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SA và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a 6
A. a 3 3 3
B. 4 a 3 3 3
C. 2 a 3 3 3
D. 8 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, B A D ^ = 60 ° và SA vuông góc với mặt phẳng (ABCD). Góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 450. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng A B C D , góc giữa đường thẳng SC và mặt phẳng A B C D bằng 60 ° . Biết rằng thể tích khối chóp S.ABCD bằng 3 a 3 2 , tính khoảng cách d giữa hai đường thẳng SB và AC.
A. d = 3 a 2 13
B. a 30 5
C. 3 a 26 13
D. a 15 5