Gọi I là trung điểm của AD nên suy ra
Chọn C.
Gọi I là trung điểm của AD nên suy ra
Chọn C.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d gữa hai đường thẳng SA và BD.
A. d = a 21 4
B. d = a 2 2
C. d = a 21 7
D. d = a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC là
A. a 3 21
B. a 21 7
C. 2 a 3
D. a 3 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa 2 đường thẳng AD và SC là
A. 2 a 3
B. a 3 7
C. a 21 7
D. a 3 21
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M là trung điểm của SB, N là trung điểm CD Khoảng cách giữa 2 đường thẳng AM và BN bằng
A. a 3 10
B. a 3 0 10
C. a 7 10
D. a 17 10
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính theo a khoảng cách d giữa hai đường thẳng SC và BD.
A. d = a 2 2
B. d = a 3 3
C. d = a 5 5
D. d = a 6 6
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính theo a khoảng cách d giữa hai đường thẳng SC và BD.
A. d = a 2 2
B. d = a 3 3
C. d = a 5 5
D. d = a 6 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
A. 5
B. 2 3
C. 2
D. 3
Cho hình chóp S,ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SA và BC
A. a 3 2
B. a
C. a 3 4
D. a/2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ điểm C đến mặt phẳng (SAD).
A. a 3 6
B. a 3 2
C. a 3 3
D. a 3 4