Đáp án A
Gọi M là trung điểm của BC
Kẻ A H ⊥ S M ⇒ d A ; S B C = A H
S A = a , A M = a 3 2 1 A H 2 = 1 S A 2 + 1 A M 2 = 1 a 2 + 1 3 a 2 ⇒ A H = A 3 7
Đáp án A
Gọi M là trung điểm của BC
Kẻ A H ⊥ S M ⇒ d A ; S B C = A H
S A = a , A M = a 3 2 1 A H 2 = 1 S A 2 + 1 A M 2 = 1 a 2 + 1 3 a 2 ⇒ A H = A 3 7
Cho khối chóp S.ABC có S A ⊥ A B C , tam giác ABC đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC)
A. h = a 3 7 .
B. h = a 3 7 .
C. h = 2 a 7 .
D. h = a 3 2 .
Cho khối chóp S.ABC có S A ⊥ ( A B C ) , tam giác ABC đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC)
A . h = a 3 7
B . h = a 3 7
C . h = 2 a 7
D . h = a 3 2
Cho hình chóp S . A B C có S A ⊥ A B C , ∆ A B C là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng S B C .
A. h = a 3 7 .
B. h = a 3 2 .
C. h = 2 a 7 .
D. h = a 3 7 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , A B C ^ = 30 ° , tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h từ điểm C đến mặt phẳng (SAB).
A. h = 2 a 39 13
B. h = a 39 13
C. h = a 39 26
D. h = a 39 52
Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a 3 , BC = a . Tam giác SAC đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách h từ A đến mặt phẳng (SBC).
A. h = a 15 5
B. h = a 5 3
C. h = 2 a 5 3
D. h = 2 a 15 5
Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 60 ° . Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a.
A. h = a 15 5
B. h = a 3 3
C. h = a 15 3
D. h = a 3 5
Cho hình chóp S.ABC có BC = a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 0 Gọi H là hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC). Biết rằng tam giác HBC vuông cân tại H và thể tích khối chóp S.ABC bằng a 3 Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 2 3 a
B. 6 3 a .
C. 2a
D. 6a
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A, ABC ^ = 30 0 tam giác SBC đều cạnh a và mặt phẳng (SAB) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ A đến (SBC).
A. a 6
B. 3 a 14 7
C. a 2 3
D. 2 a 7
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, A B C = 30 0 . SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) là:
A. a 5
B. 3 a 4
C. 39 a 13
D. a 3