Tổng các hệ số trong khai triển là:
\(a_0+a_1+...+a_n=\left(1+2.1\right)^{2023}=3^{2023}\)
Tổng các hệ số trong khai triển là:
\(a_0+a_1+...+a_n=\left(1+2.1\right)^{2023}=3^{2023}\)
1. Hệ số của \(x^5\) trong khai triển \(x\left(1-x\right)^4+x^2\left(1-2x\right)^4\) là:
A. 1 B. 24 C. 32 D. -31
2. Cho khai triển \(\left(1+2x\right)^5=a_0+a_1x+a_2x^2+...+a_5x^5.\) Tính tổng các hệ số trong khai triển trên?
A. 5 B. 243 C. 256 D. 1
3. Hệ số của số hạng thứ ba trong khai triển \(\left(x-1\right)^5\) là:
A. 1 B. 5 C. 12 D.10
Xác định hệ số của an trong khai triển \(\left(1+x+2x^2+3x^3+...+a_nx^n\right)^2\). Tìm n biết \(a_n=6C^1_n\)
Cho đa thức \(P\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) với \(a_n\ne0\). Giả sử \(\alpha\) là nghiệm của P(x). Chứng minh rằng:
a) \(\left|\alpha\right|< 1+max\left|\dfrac{a_i}{a_n}\right|\left(0\le i\le n-1\right)\)
b) \(\left|\alpha\right|\le2max\left|\dfrac{a_i}{a_n}\right|\left(0\le i\le n-1\right)\)
Tìm hệ số của số hạng chứa \(x^9\) trong khai triển \(\left(x+2\right)^5\left(3x+4\right)^5\)
Tìm hệ số của x16 trong khai triển \(\left(1-x^2+x^4\right)^{16}\)
Tìm hệ số của số hạng chứa x3 trong khai triển \(\left(x^3+\dfrac{1}{x}\right)^5\) (với x\(\ne\) 0)
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
Tìm hệ số của x4 trong khai triển biểu thức (2x+1)(x-1)5
Tìm hệ số x10 trong khai triển (2x-\(\dfrac{1}{x}\))13
giúp mình với