Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và đường thẳng AD tại F.
a/Chứng minh : tam giác BEC đồng dạng tam giác AEF [ Đã cm ]
b/Chứng minh : tam giác DCF đồng dạng tam giác AEF [ đã cm ]
c/Chứng minh : BE.DF = DB2.
d/ Chứng minh : tam giác BDE đồng dạng tam giác DBF
- Cm giúp mình 2 câu c và d nhé . Camon
Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và đường thẳng AD tại F.
a/Chứng minh : tam giác BEC đồng dạng tam giác AEF
b/Chứng minh : tam giác DCF đồng dạng tam giác AEF
c/Chứng minh : BE.DF = DB2.
d/ Chứng minh : tam giác BDE đồng dạng tam giác DBF
ý a,b,c em đã giải thành công . ý d sao rối quá, mong thầy cô giúp đỡ
Cho tam giác abc vuông tại a có AB<AC. Từ điểm D trên cạnh BC kẻ một đường thẳng vuông góc với BC và cắt doạn thẳng AC tại F, cắt tia BA tại E
a. Chứng minh tam giác AEF đồng dạng tam giác DCF
b. Chứng minh hệ thức: AE.BC= EF.AC
c. Chứng minh góc ADF = góc FCE
Giúp mình nha
Cho hình vuông ABCD, E là một điểm trên BC. Qua E kẻ tia Ax vuông góc với AE, Ax cắt CD tại F. Truyen tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI tại G.
a) Chứng minh: AE = AF và tứ giác EGKF là hình thoi
b) Chứng minh: Tam giác AKF đồng dạng với tam giác CAF và AF^2 = FK.FC
c) Khi E thay đổi trên BC. Chứng minh EK = BE + DK và chu vi tam giác EKC không đổi
Tam giác ABC nhọn , đường cao AH, điểm M tuỳ ý thuộc BC. Đường thẳng qu A và góc AM cắt đường thẳng qua M và góc AB tại E, cắt đường thẳng qua M và góc AC tại F. Đường thẳng qua C vuông góc BF cắt đường thẳng AH tại N.
a, CM : Tam giác NAC đồng dạng tam giác BMF
b, ME giao với AB tại I, MF giao với AC tại K.CM:MI.ME=MK.MF
c,CM: AB/AC=BM/CM.ME/MF từ đó suy ra tam giác ABN đồng dạng với tam giác MEC
d,CM: AH,BF,CE đồng qui
Cho hình vuông ABCD .Gọi E là 1diem trên BC qua E kẻ Ax Vuông góc với AE. Ax cắt CD tại F.Trung tuyến AI của tam giác AEF cát CD ở K. Đường thẳng qua E song song với AB cắt AI kẻ G Chứng minh Tam giác AEF đồng dạng với Tam giác CAF và AF ^2 = FK . FC
Cho tam giác ABC vuông tại A có đường cao AH và đường phân giác trong BD.
a) Chứng minh tam giác BAH đồng dạng với tam giac BCA. Suy ra AH.BC=AB.AC
b) Chứng minh DA/DC=AH/AC
c) Qua C vẽ đường thẳng d song song với BD, từ B kẻ BE _|_d (E thuộc d), đường thẳng BE cắt AC tại F. Chứng minh DA.FC=DC.FA
d) Chứng minh tam giác ABE đồng dạng với tam giác BDC.
Cho tam giác ABC vuông tại A có AB<AC có đường cao AH. Trên HC lấy D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a)CM tam giác BEC đồng dạng với tam giác ADC . Tính BE biết AB=m
b)Gọi M là trung điểm của BE. CM tam gaics BHM đồng dạng với tam giác BEC và tính góc AHM
c) Tia AM cắt BC tại G. CM GB/BC = HD/HA+HC
Cho tam giác ABC vuông tại A có AB<AC. đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD =HA. Đường thẳng qua D vuông góc với BC , cắt AC tại E.
a CMR: BE.AC=AD.BC
b; Gọi M là trung điểm của BE, CMR: tam giác BHM đồng dạng với tam giác BEC và tính số đo góc AHM.
Giúp vs mik đang cần gấp