Cho tam giác ABC vuông tại A có AB<AC có đường cao AH. Trên HC lấy D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a)CM tam giác BEC đồng dạng với tam giác ADC . Tính BE biết AB=m
b)Gọi M là trung điểm của BE. CM tam gaics BHM đồng dạng với tam giác BEC và tính góc AHM
c) Tia AM cắt BC tại G. CM GB/BC = HD/HA+HC
Cho Tam Giác ABC vuông tai A ( AC> AB) , đường cao AH ( H thuộc BC) . Trên Tia HC lấy điểm D sao cho HD= HA. Đường vuông góc vs BC tại D cắt AC tại E .
a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng . Tính độ dài đoạn BE theo m = AB
b) gọi M là trung điểm của đoạn thẳng BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng .
c) Tia AM cắt BC tại G . C/m : GB/ BC= HD/ AH+ HC
Cho tam giác ABC vuông tai A(AC>AB) , đường cao AH. Trên HC lấy điểm D sao cho HD = HA. Đường vuông gác với BC tại D cắt AC tại E.
a) Chứng minh tam giác BEC đồng dạng với tam giác ADC. Tính BE theo AB = m
b) Gọi M là trung điểm của BE. Chứng minh tam giác BHM đồng dạng với tam giác BEC. Tính góc AHM.
c) vẽ tia AM cắt BC tại G. Chứng minh rằng GB/BC = HD/(AH +HC)
Cho tam giác ABC vuông tại A, (AC > AB), đường cao AH. Trên tia HC lấy D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E. M là trung điểm BE. a) Chứng minh tam giác BEC đồng dạng với tam giác ADC.
b) Tính số đo góc AHM
(VẼ HÌNH)
Cho tam giác ABC vuông tại A (AC>AB)đường cao AH(H thuộc BC).Trên HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt Ac tại E.
a)Chứng minh hai tam giác BEC và ADC đồng dạng.Tính độ dài BE theo m=AB
b)Gọi M là trung điểm của BE.Chứng minh hai tam giác BHM và BEC đồng dạng. Tính số đo góc AHM
c)Tia AM cắt BC tại G.Chứng minh \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác ABC vuông tại A( AC > AB), đường cao AH( H thuộc BC). Trên tia đối của tia HB lấy điểm D sao cho HD=HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E.
1. Chứng minh CD.CB=CA.CE
2. tính số đo góc BEC
3. gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G.Chứng minh; GB/BC=HD/AH+HC
tam giác ABC vuông tại A AC>AB: đường cao AH; D thuộc HC sao cho DH=HA; đường vuông góc với BC taij D cắt AC tại E
a/cmrtam giác BEC đồng dạng ADC cho AB=m BE=?
b/M là trung điểm của BE cmr t/g BHM đồng dang BEC và góc AHM=?
c/AM giao BC tại G cmr BC.HD=BG.(AH+HC)
Cho tam giác ABC vuông tại A có cạnh AC>AB , đường cao AH (H thuộc BC) Trên tia HC lấy D/ D HD=HA. Đường vuông góc với BC tại D cắt AC tại E. CMR:
a, HD2 =BH.HC
b, CM: tam giác tam giác BEC đồng dạng với ADC
c, CM tam giác ABE vuông cân
d, Gọi M là trung điểm BE vẽ tianAM cắt BC tại G. CM:
GB/BC bằng HD/(AH+HC)
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng
b) Cho AB=3cm. Tính độ dài BE
c) Gọi M là trung điểm BE, tia AM cắt BC tại G. Chứng minh \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)