Cho hình vuông ABCD; N là trung điểm BC; giao điểm của 2 đường chéo là O; M là trung điểm AO; kẻ đoạn thẳng DN; trên AB lấy I, trên AD lấy K sao cho AI = AK; nối DI; kẻ đoạn thẳng AQ ( Q ϵ BC ) vuông góc với đoạn thẳng DI, giao điểm của AQ và DI là P.
a) Chứng minh 4 điểm C, N, M, D cùng thuộc một đường tròn và CN > MC.
b) Chứng minh 5 điểm C, D, K, P, Q cùng thuộc một đường tròn.
Cho đường tròn tâm O, bán kính R, đường thẳng d không đi qua O và cắt đường tròn tai 2 điểm A và B. Từ một điểm C trên d (C nằm ngoài đường tròn) kẻ hai tiếp tuyến CM và CN với đường tròn ( M,N thuộc(O)). Gọi H là trung điểm AB, đường thẳng OH cắt tia CN tại K. a/ CM 5 điểm C,O,H,M,N thuộc cùng một đường tròn. b/ CM KN.KC=KH.KO c/ 1 đường thẳng đi qua O song song MN cắt các tia CM,CN lần lược tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. kẻ d1 đi qua O cắt AB, CD tại E, G sao cho góc EOB=30o . kẻ d2 vuông góc với d1 tại O và cắt BC và AD tại F và H.
a, CM: EFGH là hình vuông
b, nếu AB=\(2\left(\sqrt{3}+1\right)\). Tính diện tích hình vuông
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
Cho hình vuong ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia Cb cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thằng này cắt đường thẳng BC tại L. Chứng minh rằng:
a) Tam giác DIL là một tam giác cân
b) Tổng \(\frac{1}{DI^2}+\frac{1}{DK^2}\) không đổi khi I thay đổi trên AB
Đây là bài 9(SGK-70) lớp 9 nha! Các bn giúp mk!
Cho đoạn thẳng AB= 2a. Từ trung điểm O của AB vẽ tia Ox vuông góc AB. Trên Ox, lấy điểm D sao cho OD=\(\frac{a}{2}\) .Từ B kẻ BC vuông góc với đường thẳng AD
a/ Tính AD,AC VÀ BC theo a
b/ Kéo dài DO một đoạn OE=a. chứng minh bốn điểm A,B,C và E cùng nằm trên một đường tròn
GIÚP VỚI, THANKS NHIỀU