Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MixiGaming

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lấy lần lượt các điểm M, N, P, Q
sao cho AM = BN = CP = DQ. Chứng minh:
1) MB = NC = PD = QA 2) Tứ giác MNPQ là hình vuông

Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 19:06

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 


Các câu hỏi tương tự
người bán muối cho thần...
Xem chi tiết
Yubi
Xem chi tiết
hải hà
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Nguyễn Thị Hồng Diễm
Xem chi tiết
MR BINO
Xem chi tiết
GTV -( Hội Con 🐄 )
Xem chi tiết
Trịnh Phúc Kim
Xem chi tiết
Nguyễn Trần Mỹ Hòa
Xem chi tiết