Cho tam giác vuông ABC, O là giao điểm của hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm của OB, CD. Chứng minh rằng: góc AMN = 90 độ, từ đó suy ra bốn điểm A., M, N, D cùng thuộc một đường thẳng
cho hình vuông ABCD, hai đường chéo cắt nhau tại O. M,N lần lượt là trung điểm của OB, CD.
a) Chứng minh góc AMN= 90 độ, từ đó suy ra A, M, N,D thuộc cùng một đường tròn
b) so sánh AN với MD
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H.
1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này.
2) Chứng minh: MA.MB = MD.MH
3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng.
4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD.
Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn.
Cho hình vuông ABCD. Đường tròn (O) nội tiếp hình vuông và tiếp xúc với hai cạnh AB,AD lần lượt tại E và F. GỌi giao điểm của BE và CF là G.
a) CMR 5 điểm A,F,O,G,E cùng thuộc một đường tròn
b) Gọi giao điểm của BF và (O) là M (M khác F). CMR M là trung điểm của BG
c) CMR trực tâm của tam giác GAF thuộc đường tròn (O)
Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).
a) CM: IE.IF= IC.ID
b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.
c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.
d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng
Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.
a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn
b cm BD //OA
c i là giao điểm BH và AD. Cm i là trung điểm bh
Giúp em phần c với ạ!
Bài 2. Cho hình vuông ABCD có cạnh là a, trên cạnh AB và BC lần lượt lấy các điểm M và N sao cho AM BN. Gọi K là giao điểm của AN và DM.
a/. Chứng minh rằng 4 điểm C, D, K, N cùng thuộc một đường tròn.
b/. Trong trường hợp M, N là trung điểm của AB và BC. Hãy xác định tâm của đường tròn này và tính bán kính của đường tròn theo a.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. gọi M và N lần lượt là trung điểm của AB và AD. Kẻ ME vuông góc với CD tại E, NF vuông góc với BC tại F. chứng minh M,N,E,F cùng thuộc một đường tròn.
cho đường tròn (o;r và dây ab không đi qua tâm o ,gọi m và n lần lượt là hình chiếu của b trên các đường thẳng ac ad chứng minh rằng
a) Bốn điểm A,B,M,N cùng thuộc 1 dường tròn
b) MN<2R