Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Người Bí Ẩn

Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K                                                                                      a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp)                         b) Chứng minh OB vuông góc OK và BM.MK= AB^2/4                                 c) Đường thẳng AM cắt CD tại E. Cm K là trung điểm của ED và tính chu vi tứ giác ABKD

Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 20:14

 

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE

Người Bí Ẩn
28 tháng 12 2023 lúc 20:16

Vẽ hình hộ mình nhé bạn

 


Các câu hỏi tương tự
Người Bí Ẩn
Xem chi tiết
Người Bí Ẩn
Xem chi tiết
nguyển thị thảo
Xem chi tiết
Poon Phạm
Xem chi tiết
Nguyễn thị thảo
Xem chi tiết
nguyển thị thảo
Xem chi tiết
phạm hoàng
Xem chi tiết
Phạm Bảo châu
Xem chi tiết
lê thảo duy
Xem chi tiết