Cho hình tròn tâm S, bán kính R = 2 . Cắt đi 1 4 hình tròn rồi dán lại để tạo ra mặt xung quanh của hình nón như hình vẽ. Tính diện tích toàn phần của hình nón đó.
A. 21 π 4
B. 3 + 4 3 π
C. 3 + 2 3 π
D. 3 π
Cho hình tròn (C), bán kính R = 2. Cắt 1 4 hình tròn (C) (như hình vẽ), rồi lấy 1 4 hình tròn đó dán kín OA và OB lại để tạo ra mặt xung quanh của một hình nón. Tính diện tích toàn phần của hình nón.
A. S t p = 5 π
B. S t p = 5 π 2
C. S t p = 5 π 8
D. S t p = 5 π 4
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (N) và hình nón (T).
A. V T V N = 2 6
B. V T V N = 2 3
C. V T V N = 3 2
D. Đáp án khác
Từ một hình tròn có tâm S, bán kính R, người ta tạo ra các hình nón theo hai cách sau đây
Cách 1: Cắt bỏ 1/4 hình nón rồi ghép hai mép lại được hình nón N 1
Cách 2: Cắt bỏ 1/2 hình nón rồi ghép hai mép lại được hình nón N 2
Gọi V 1 , V 2 lần lượt là thể tích của khối nón N 1 và khối nón N 2 . Tính V 1 V 2
A. V 1 V 2 = 9 3 4 2
B. V 1 V 2 = 3 3 2 2
C. V 1 V 2 = 7 2 3
D. V 1 V 2 = 9 7 8 3
Cho một miếng tôn hình tròn tâm O, bán kính R. Cắt bỏ một phần miếng tôn theo một hình quạt OAB và gò phần còn lại thành một hình nón đỉnh O không có đáy (OA trùng với OB). Gọi S và S ' lần lượt là diện tích của miếng tôn hình tròn banđầu và diện tích của miếng tôn còn lại. Tìm tỉ số S ' S để thể tích của khối nón đạt giá trị lớn nhất
A. 2 2
B. 1 4
C. 1 3
D. 6 3
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).
A. 27 3 π
B. 18 3 π
C. 9 3 π
D. 36 3 π
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 0 . Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón N .
A. S x q = 36 3 π .
B. S x q = 27 3 π .
C. S x q = 18 3 π .
D. S x q = 9 3 π .
Hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120°. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón (N).
A. 36 3 π
B. 27 3 π
C. 18 3 π
D. 9 3 π
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6