a: Xét hình thang ABCD có
K,I lần lượt là trung điểm của AD,BC
=>KI là đường trung bình
=>KI//AB//CD và KI=(AB+CD)/2
b: Xét ΔIAD có
IK vừa là đường cao, vừa là trung tuyến
=>ΔIAD cân tại I
a: Xét hình thang ABCD có
K,I lần lượt là trung điểm của AD,BC
=>KI là đường trung bình
=>KI//AB//CD và KI=(AB+CD)/2
b: Xét ΔIAD có
IK vừa là đường cao, vừa là trung tuyến
=>ΔIAD cân tại I
cho tam giác ABC cân tại A (góc A < 90 độ ) . gọi I là trung điểm của BC . Kẻ IH vuông góc với BA ( H thuộc AB ) , IK vuông góc với AC ( K thuộc AC )
a, CM tam giác IHB = tam giác IKC
b, So sánh IB và IK
c, kéo dài KI và AB cắt nhau tại E , kéo dài HI và AC cắt nhau tại F . CM tam giác AEF cân
d, CM HK // EF
cho ΔABC cân tại A có góc a = 90 độ , kẻ BD vuông góc với AC, kẻ CE vuông góc với AB . Gọi k là giao điểm của BD và CE
a) cm ΔBCE = ΔCBD
b) cm KD=KE
c) cm AK là phân giác góc A
d) cm 3 điểm A,K,I thẳng hàng với I là trung điểm của BC
Cho tam giác ABC cân tại A có góc BAC nhọn . Gọi M là trung điểm của cạnh BC , Vẽ ME Vuông góc với AB tại E; MF vuông góc với AC tại F . Tia FM cắt tia AB tại I , tia Em cắt tia AC tại K và N là trung điểm của IK
a) C/M tam giác AEM= tam giác AFM
b) C/m AM vuông góc với EF
c) C/M Tam giác MIK cân
d) C/M BM+CM< AB+AC
Cho tam giác ABC : góc A= 45 độ,góc B = 70 độ. Gọi M là trung điểm của BC. Trên tia đối của tia MA xác định điểm D sao cho MA=MB
a.) Tính số đo góc C.
b.) Chứng minh tam giác ABM = tam giác DCM. Từ đố suy ra AB//CD
c.) Qua điểm M kẻ Mi vuông góc AB(I thuộc AB). Kẻ MK vuông góc CD (k thuộc CD)
Chứng minh M là trung điểm của IK
Cho tam giác ABC. M là trung điểm BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) CM: AB song song với CD và AB=CD
b) Kẻ MH vuông góc với Ab (H thuộc AB). CM: MH vuông góc với CD
c) Trên tia AC lấy điểm I, trên tia BD lấy điểm K sao cho AI=KD. CM: I, M, K thẳng hàng
d) Tìm điều kiện của tam giác ABC để góc CDB = 90 độ
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
Tam giác ABC cân tại A , I là trung điểm của BC . Vẽ IE vuông góc với AC tại diểm E , ID vuông góc với AB tại đỉnh D
a, C/m : tam giác BID = tam giác CIE
b, tam giác IDE cân , DE// BC
c, C/m : Ik vuông góc với DE với K là trung điểm của DE
GIúp mình với nha
Câu 1) cho tam giác ABC cân tại A (AB=AC) . Gọi D, E lần lượt là trung điểm của AB và AC
a) CM tam giác ABE=tam giác ACD
b)CM BE=CD
c) Gọi K là trung điểm của BE và CD. Chứng minh tam giác KBC cân tại K
d) CM AK là tia phân giác của góc BAC
Câu 2) cho tam giác ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự hai điểm Q và R sao cho BQ=CR
a) CM. AQ=AR
b) gọi H là trung điểm của BC. CM góc QAH=góc RAH
Câu3)cho tam giác ABC có AB=AC=5cm ; BC= 8cm. Kẻ AH vuông góc BC ( H thuộc BC)
a) CM HB=HC và góc BAH=góc CAH
b) tính độ dài AH
c) kẻ AH vuông góc AB (D thuộcAB) HE vuông góc AC( E thuộc AC) CMR tam giác HDE cân
cho tam giác ABC cân tại A ( góc A < 90 độ ). Kẻ BD vuông góc với AC ( D thuộc AC ), CE vuông góc với AB ( E thuộc AB ). BD cắt CE tại H.
a) cm tam giác ABD = tam giác ACE
b) CM tam giác BHC cân
c) Cm ED // BC
d) AH cắt BC tại K,trên tia HK lấy điểm M sao cho K là trung điểm của HM.Cm tam giác ACM vuông