Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
cho tam giác ABC vuông tại A có AB=1, AC=2. Dựng M sao cho AM=3 và AM vuông góc với BC. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}\). Tìm x,y
Cho hình vuông ABCD có cạnh = 6a
a) tính độ dài các vecto sau \(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{AC}\) ; \(\overrightarrow{v}=\overrightarrow{BC}+\overrightarrow{BD}\)
b) tính các tích vô hương sau : \(\overrightarrow{AB}.\overrightarrow{AC}\); \(\overrightarrow{BD}.\overrightarrow{AC}\);\(\overrightarrow{AB}.\overrightarrow{CD}\)
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho hình vuông cố định A,B,C,D cạnh a.Trên đường thẳng DC có điểm M thay đổi .Gọi K,E,J lần lượt là giao điểm của các cặp đường thẳng BC và AM,DK và DM,AM và CE .câu a,Tính Độ dài Vecto OJ,với O là tâm hình vuông ABCD.Câu b,Khi Vecto OJ cùng hướng với Vecto DC hãy tính độ dài vecto AM.Mọi người giải hộ mik nhé
Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)