Chọn B.
Phương pháp: v
Cách giải: Gọi I là trung điểm AB, H là hình chiếu của O lên (SAB). Dễ dàng chứng minh
Chọn B.
Phương pháp: v
Cách giải: Gọi I là trung điểm AB, H là hình chiếu của O lên (SAB). Dễ dàng chứng minh
Cho hình nón đỉnh S, đáy là đường tròn (O;r). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8 r 5 . Tính theo r khoảng cách từ O đến (SAB)
A. 2 2 r 5 .
B. 3 13 r 20 .
C. 3 2 r 20 .
D. 13 r 20 .
Cho hình nón đỉnh S ,đáy là đường tròn (O;r) . Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho S A = A B = 8 r 5 . Tính theo r khoảng cách từ O đến (SAB)
A. 2 2 r 5
B. 3 13 r 20
C. 3 2 r 20
D. 13 r 20
Cho hình nón đỉnh S có chiều cao h = a và bán kính đáy r = 2a. Mặt phẳng (P) đi qua S, không chứa trục của hình nón cắt đường tròn đáy tại A và B sao cho A B = 2 3 a Khoảng cách từ âm của hình tròn đáy đến mặt phẳng (P) bằng
A. a 3 2
B. a 2 2
C. a 5 5
D. a
Cho hình nón đỉnh S có chiều cao bằng bán kính đáy và bằng 2a. Mặt phẳng (P) đi qua S cắt đường tròn đáy tại A và B sao cho A B = 2 3 a . Tính khoảng cách từ tâm của đường tròn đáy đến (P).
A . 2 a 5
B . a 5
C. a
D . a 2 2
Cho hình nón đỉnh S có chiều cao h và bán kính đáy r=2a. Mặt phẳng (P) đi qua S và cắt đường tròn đáy tại A và B sao cho AB= 2 3 a . Biết khoảng cách từ tâm đường tròn đáy đến (P) bằng 5 a 5 . Tính thể tích V của khối nón.
A. V = 2 3 πa 3
B. V = 4 πa 3
C. V = 2 πa 3
D. V = 4 3 πa 3
Một hình nón có đỉnh S, đường cao SO, gọi A, B là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ AB đến O bằng a và góc S A O ^ = 30 ° , S A B ^ = 60 ° . Tính diện tích xung quanh nón.
A. S x q = 2 πa 2 3
B. S x q = 3 πa 2 3
C. S x q = πa 2 3
D. S x q = 4 πa 2 3
Cho hình nón tròn xoay đỉnh S, đáy là đường tròn tâm O, bán kính đáy r=5. Một thiết diện qua đỉnh là tam giác SAB đều có cạnh bằng 8. Khoảng cách từ O đến mặt phẳng (SAB) bằng
C. 3
Cho hình nón đỉnh S có bán kính đáy bằng a 2 . Mặt phẳng (P) qua S cắt đường tròn đáy tại A, B sao cho AB=2a. Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng (P) là 4 a 17 17 . Thể tích khối nón bằng
A. 8 3 π a 3 .
B. 2 π a 3 .
C. 10 3 π a 3 .
D. 4 π a 3 .
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R = 3 c m , góc ở đỉnh của hình nón là φ = 120 0. . Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
A. 3 3 c m 2 .
B. 6 3 c m 2 .
C. 6 c m 2 .
D. 3 c m 2 .