Cho hình phẳng D giới hạn bởi đường cong y = 3 + x − 2 e x x e x + 1 , trục hoành và hai đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V = π a + b ln 1 + 1 e , trong đó a, b là các số hữu tỷ. Mệnh đề nào dưới đây là đúng?
A. a+b=5
B. a-2b=5
C. a+b=3
D. a-2b=7
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6
Một hình nón có thiết diện qua trục là tam giác đều cạnh bằng 2a . Tính thể tích của khối nón được tạo nên từ hình nón đó.
A. 1 3 π a 3 3
B. π a 3 3
C. 1 4 π a 3 3
D. 1 12 π a 3 3
Diện tích toàn phần của hình nón có khoảng cách từ tâm của đáy đến đường sinh bằng 3 và thiết diện qua trục là tam giác đều bằng
A. 16 π .
B. 8 π
C. 20 π
D. 12 π
Cho hình nón tròn xoay có chiều cao bằng 4 và bán kính đáy bằng 3. Mặt phẳng (P) đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác cân có độ dài cạnh đáy bằng 2. Diện tích của thiết diện bằng
A. 6
B. 19
C. 2 6
D. 2 3
Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác đều có cạnh bằng a. Tính thể tích của khối nón đó.
A. 3 π a 3 8
B. 2 3 π a 3 9
C. 3 π a 3
D. 3 π a 3 24
Biết rằng thiết diện qua trục của một hình nón là tam giác đều có diện tích bằng a 2 3 . Tính thể tích V của khối nón đã cho
A. V = π a 3 3 2
B. V = π a 3 6 6
C. V = π a 3 3 3
D. V = π a 3 3 6
Cho hình nón (N) có thiết diện qua trục là tam giác vuông cân, cạnh bên bằng 2a. Tính thể tích của khối nón (N) theo a.
A. 2 πa 3 2
B. 2 πa 3 2 3
C. πa 3 3
D. πa 3
Một hình nón có thiết diện qua trục là tam giác đều cạnh a. Tính diện tích xung quanh của hình nón đó theo a.
A. π a 2 .
B. π a 2 2 .
C. π a 2 3 2 .
D. π a 2 3 .