Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6
Cho hình nón có thiết diện qua trục là một tam giác đều cạnh bằng 1. Tìm chiều cao của hình nón.
A. h = 2 2
B. h = 3 4
C. h = 1 2
D. h = 3 2
Cho hình nón có thiết diện qua trục là một tam giác đều cạnh bằng 1. Tìm chiều cao của hình nón.
A. h = 2 2
B. h = 3 4
C. h = 1 2
D. h = 3 2
Diện tích toàn phần của hình nón có khoảng cách từ tâm của đáy đến đường sinh bằng 3 và thiết diện qua trục là tam giác đều bằng
A. 16 π .
B. 8 π
C. 20 π
D. 12 π
Cho hình nón có thiết diện qua trục là tam giác đều cạnh bằng 2α. Tính thể tích của hình nón
A. 3 πa 3
B. 3 πa 3 3
C. 3 πa 3 6
D. 3 πa 3 2
Một hình nón có thiết diện qua trục là tam giác đều cạnh bằng 2a . Tính thể tích của khối nón được tạo nên từ hình nón đó.
A. 1 3 π a 3 3
B. π a 3 3
C. 1 4 π a 3 3
D. 1 12 π a 3 3
Cho hình nón tròn xoay có chiều cao bằng 4 và bán kính đáy bằng 3. Mặt phẳng (P) đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác cân có độ dài cạnh đáy bằng 2. Diện tích của thiết diện bằng
A. 6
B. 19
C. 2 6
D. 2 3
Thiết diện qua trục của một hình nón là tam giác đều cạnh bằng 4. Một mặt cầu có diện tích bằng diện tích toàn phần của hình nón. Tính bán kính của mặt cầu.
A. 3
B. 4
C. 4 3
D. 2 3
Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác đều có cạnh bằng a. Tính thể tích của khối nón đó.
A. 3 π a 3 8
B. 2 3 π a 3 9
C. 3 π a 3
D. 3 π a 3 24