Trong không giam Oxyz, cho mặt phẳng (P) có phương trình 2x-y+2z+1=0, đường thẳng d có phương trình x - 1 - 1 = y - 2 = z + 2 2 . Gọi φ là góc giữa đường thẳng d và mặt phẳng (P). Tính giá trị cos φ
A. cos φ = 6 / 9
B. cos φ = 65 9
C. cos φ = 9 65 65
D. cos φ = 4 / 9
Cho tứ diện đều ABCD cạnh a. Gọi φ là góc giữa đường thẳng AB và mặt phẳng (BCD). Tính cosφ .
A. cosφ = 3 3
B. cosφ = 2 3
C. cosφ = 1 2
D. cosφ = 3 2
Cho tứ diện đều ABCD. Gọi φ là góc giữa hai mặt phẳng ( BCD) và ( ABC) Khẳng định nào sau đây là đúng?
A. tan φ = 1 3
B. φ = 60 °
C. c o s φ = 1 3
D. φ = 30 °
Cho hình lập phương A B C D . A ' B ' C ' D ' . Gọi M là trung điểm của AD và φ là góc giữa hai mặt phẳng (BMC') và (ABB'A'). Khẳng định nào dưới dây đúng?
A. cos φ = 3 4
B. cos φ = 4 5
C. cos φ = 1 3
D. cos φ = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C ^ = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng A B C D trùng với trọng tâm tam giác ABC. Gọi φ là góc giữa đường thẳng SB với mặt phẳng S C D , tính sin φ biết rằng S B = a .
A. sin φ = 2 2
B. sin φ = 2 3
C. sin φ = 3 2
D. sin φ = 6 2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi φ là goc giữa đường thẳng SB và mặt phẳng (SCD), tính sin φ biết rằng SB = a.
A. sin φ = 1 4
B. sin φ = 1 2
C. sin φ = 3 2
D. sin φ = 2 2
Cho chóp S.ABCD có đáy là hình vuông cạnh a, S A ⊥ A B C D và a 6 Gọi φ giữa đường SC và mặt phẳng(SAD). Tính cosφ
A. 14 4
B. 14 2
C. 6 3
D. 6 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, diện tích tam giác SAB bằng a 2 . Gọi φ là góc giữa hai mặt phẳng (SCD) và (ABCD). Tính tan φ
tan φ
B. tan φ = 1
C. tan φ = 2
D. tan φ = 3
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, gọi φ là góc giữa hai mặt phẳng S A B v à C S D . Tính cos φ
A. cos φ = 1 2
B. cos φ = 1 6
C. cos φ = 1 3
D. cos φ = 1 4