Chọn D.
Phương pháp:
- Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD).
- Xác định góc φ và tính sin φ
Cách giải:
Chọn D.
Phương pháp:
- Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD).
- Xác định góc φ và tính sin φ
Cách giải:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C ^ = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng A B C D trùng với trọng tâm tam giác ABC. Gọi φ là góc giữa đường thẳng SB với mặt phẳng S C D , tính sin φ biết rằng S B = a .
A. sin φ = 2 2
B. sin φ = 2 3
C. sin φ = 3 2
D. sin φ = 6 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, diện tích tam giác SAB bằng a 2 . Gọi φ là góc giữa hai mặt phẳng (SCD) và (ABCD). Tính tan φ
tan φ
B. tan φ = 1
C. tan φ = 2
D. tan φ = 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cos φ với φ là góc tạo bởi (SAC) và (SCD).
A. 2 7
B. 6 7
C. 3 7
D. 5 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với A B = 2 a . Tam giác SAB vuông tại S, mặt phẳng S A B vuông góc với A B C D . Biết góc tạo bởi đường thẳng SD và mặt phẳng S B C bằng φ ; sin φ = 1 3 . Tính khoảng cách từ C đến mặt phẳng S B D theo a.
A. a
B. a 3
C. 2 a 3
D. 2a
Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a. Biết SA = a và vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng φ , với cos φ = 2 5 . Tính theo a thể tích của khối chóp S.ABCD
A. 4 3 a 3
B. 2 3 a 3
C. 2 a 3
D. a 3 3
Cho chóp S.ABCD có đáy là hình vuông cạnh a, S A ⊥ A B C D và a 6 Gọi φ giữa đường SC và mặt phẳng(SAD). Tính cosφ
A. 14 4
B. 14 2
C. 6 3
D. 6 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc
mặt đáy và SA = a . Gọi φ là góc tạo bởi SB và mặt (ABCD). Xác định cot φ
A. cot φ = 2
B. cot φ = 1 2
C. cot φ = 2 2
D. cot φ = 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD = 600 , SA=SB=SD= a 3 2 . Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng
A. 1 3
B. 2 3
C. 5 3
D. 2 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và B A D ^ = 60 ° . Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng 60 0 . Khoẳng cách từ điểm B đến mặt phẳng (SCD) bằng
A. 21 a 14
B. 21 a 7
C. 3 7 a 14
D. 3 7 a 7