Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’. Gọi d là giao tuyến của hai mặt phẳng (A’B’C’) và (A’BC). Thiết diện của hình lăng trụ khi cắt bởi mp(H,d) là hình gì?
A. Không xác định
B. Tam giác
C. Hình vuông
D. Hình bình hành
Cho hình lăng trụ tam giác đều ABC. A’B’C’ có AA'= a 3 Gọi I là giao điểm của AB’ và A’B. Cho biết khoảng cách từ I đến mặt phẳng (BCC'B') bằng a 3 2 . Tính thể tích khối lăng trụ ABC. A’B’C’.
A. 3 a 3
B. a 3
C. 3 a 3 4
D. a 3 4
Cho hình lăng trụ đứng có tam giác ABC vuông cân tại B. Biết AB = a 2 và AA' = a 6 . Khi đó diện tích xung quanh của hình trụ ngoại tiếp hình lăng trụ đứng đã cho là
Cho hình lăng trụ đứng tam giác ABC. A’B’C’, có cạnh bên AA’ = 21 cm, tam giác ABC vuông cân tại A, BC = 42 cm. Tính khoảng cách từ A đến mặt phẳng (A’BC).
A. 21 2 c m
B. 21 2 2 c m
C. 21 2 c m
D. 21 2 4 c m
Cho lăng trụ đứng ABC. A’B’C’ có tất cả các cạnh bằng a và có G, G' lần lượt là trọng tâm của hai tam giác ABC và A’B’C’ (tham khảo hình vẽ).
Thiết diện tạo bởi mặt phẳng (AGG') với hình lăng trụ đã cho là
A. Tam giác vuông
B. Tam giác cân
C. Hình vuông
D. Hình chữ nhật
Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng 2a, cạnh bên bằng a. Tính góc giữa hai mặt phẳng (AB’C’) và (A’B’C’).
A. π 6
B. π 3
C. arccos 3 4
D. arcsin 3 4
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy là tam giác vuông cân tại đỉnh A, mặt bên BCC’B’ là hình vuông, khoảng cách giữa AB’ và CC’ bằng a. Thể tích của khối trụ ABC. A’B’C’.
A. a 3
B. 2 a 3 2
C. 2 a 3 3
D. 2 a 3
Cho lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại B, AB = a, AA’= 2a. Tính khoảng cách từ điểm A đến mặt phẳng (A’BC)
A. 2 5 a
B. 2 5 a 5
C. 5 a 5
D. 3 5 a 5
Cho hình lăng trụ ABC. A’B’C’ có đáy là tam giác vuông cân tại A, AB =a. Biết thể tích của khối lăng trụ ABC. A’B’C’ là V = 4 a 3 3 Tính khoảng cách giữa hai đường thẳng AB và B’C’
A. h = 8 a 3
B. h = 3 a 8
C. h = 2 a 3
D. h = a 3