Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của A cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ).Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x = 0; x=2 có diện tích bằng
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 - 6 x + 9 và 2 đường thẳng x = 0; y = 0 Đường thẳng (d) có hệ số k và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = - x 2 + 4 và y=-x+2
A. 9/2
B.5/7
C.8/3
D. 9
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 2 ) . e 2 x , trục tung và trục hoành. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox có dạng π ( e a + b ) c . Khi đó a+b+c bằng
A. 2
B. 56
C. -1
D. -24
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x + 1 x + 2 , trục hoành và đường thẳng x=2 là.
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số (H) : y = x 3 - 3 x 2 + 3 x - 1 y = 1 - x x = 0 , x = 2
A. 1
B. 3 2
C. 2
D. 3
Cho hình phẳng H giới hạn bởi đồ thị hàm số y = x 2 và y = 2 - x . Tính thể tích V của khối tròn xoay tạo được khi quay H xung quanh trục tung.