\(CD=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
M là trung điểm của CD
=>CM=MD=2a
\(BM=\sqrt{\left(4a\right)^2+\left(2a\right)^2}=2a\sqrt{5}\)
|vecto BC+vecto BD|=|2*vecto BM|=2MB=4a*căn 5
\(CD=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
M là trung điểm của CD
=>CM=MD=2a
\(BM=\sqrt{\left(4a\right)^2+\left(2a\right)^2}=2a\sqrt{5}\)
|vecto BC+vecto BD|=|2*vecto BM|=2MB=4a*căn 5
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
Cho hình vuông ABCD có cạnh = 6a
a) tính độ dài các vecto sau \(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{AC}\) ; \(\overrightarrow{v}=\overrightarrow{BC}+\overrightarrow{BD}\)
b) tính các tích vô hương sau : \(\overrightarrow{AB}.\overrightarrow{AC}\); \(\overrightarrow{BD}.\overrightarrow{AC}\);\(\overrightarrow{AB}.\overrightarrow{CD}\)
Cho hình thang ABCD vuông tại A và D có DC=3a, AB=a
Tính độ dài đường cao AD theo a để AC vuông góc vs BD.Khi đó hãy tính \(\overrightarrow{AM}.\overrightarrow{DN}\) với M,N lần lượt là trug diểm của BC và BD
Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD
Cho hình chữ nhật ABCD tâm O, AD =4, AD =5
a) Tính độ lớn \(\overrightarrow{BD}\)
b) Gọi M là trung điểm của CD. Chứng minh \(2\overrightarrow{OM}+\overrightarrow{OB}=\dfrac{1}{2}\overrightarrow{AC}\)
: Cho hình chữ nhật ABCD có AB = 4 avà AD 3a . Gọi M là trung điểm của cạnh DC . Tính
\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AM}\right|\)
Cho hcn abcd có ac=8, bd=6. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho hình vuông ABCD cạnh a, Tính |4\(\overrightarrow{AB}\) - \(\overrightarrow{AC}\)|:
A. A(A + \(\sqrt{2}\) ) B. a\(\sqrt{10}\) C. a\(\sqrt{5}\) D. 3a