Đáp án A
(với h’ và h lần lượt là khoảng cách từ S đến (MNPQ) và (ABCD)).
=> Chọn phương án A.
Đáp án A
(với h’ và h lần lượt là khoảng cách từ S đến (MNPQ) và (ABCD)).
=> Chọn phương án A.
Cho hình chóp S.ABCD. Gọi A', B', C', D' lần lượt là trung điểm của SA, SB, SC, SD. Khi đó tỉ số thể tích của hai khối chóp S.A'B'C'D' và S.ABCD là
Hình chóp tứ giác đều S.ABCD có cạnh đáy có độ dài a. Mặt phẳng (P) qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại B’, C’, D’ sao cho SB’= 2BB’. Tỉ số giữa thể tích hình chóp S.AB’C’D’ và thể tích hình chóp S.ABCD bằng
A. 2 3
B. 4 9
C. 1 3
D. 4 27
Cho hình chóp S.ABCD Gọi A', B' , C', D' theo thứ tự là trung điểm của SA, SB, SC, SD. Tính tỉ số thể tích của hai khối chóp S.A'B'C'D' và S.ABCD
A. 1 16
B. 1 4
C. 1 8
D. 1 2
Cho hình chóp S.ABCD có thể tích bằng 27 m 3 Lấy A' trên SA sao cho SA=3SA' Mặt phẳng qua A' và song song với đáy hình chóp cắt SB, SC, SD lần lượt tại B’, C’, D’. Tính thể tích hình chóp S.A’B’C’D’
Cho hình chóp tứ giác đều S.ABCD có SA=a và SAB= 11 π 24 . Gọi Q là trung điểm cạnh SA. Trên các cạnh SB,SC,SD lần lượt lấy các điểm M,N,P không trùng với các đỉnh hình chóp. Tìm giá trị nhỏ nhất của tổng AM+MN+NP+PQ theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A . Mặt phẳng (P) đi qua A và vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SA=8a. ASC= 60 o Tính thể tích khối cầu ngoại tiếp đa diện ABCD.MNP?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA ⊥ (ABCD). Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2SD Tính thể tích V của khối tứ diện ACMN
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, các điểm M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Gọi V 1 , V 2 lần lượt là thể tích của S.ABC và O.MNPQ. Tính tỉ số V 1 V 2 .
A. V 1 V 2 = 1
B. V 1 V 2 = 2
C. V 1 V 2 = 4
D. V 1 V 2 = 8
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 0 , SA=SB=SC, SD= 2a. Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 ; V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4