Cho hình chóp S.ABCD có thể tích bằng 27 m 3 Lấy A' trên SA sao cho SA=3SA' Mặt phẳng qua A' và song song với đáy hình chóp cắt SB, SC, SD lần lượt tại B’, C’, D’. Tính thể tích hình chóp S.A’B’C’D’
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên tạo với đáy một góc 60 0 . Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD cắt SB tại E và cắt SD tại F. Tính thể tích V khối chóp S.AEMF
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.
Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC. Mặt phẳng chứa AB và đi qua G cắt các cạnh, SC SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng 60 0 . Thể tích khối chóp S. ABMN bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A . Mặt phẳng (P) đi qua A và vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SA=8a. ASC= 60 o Tính thể tích khối cầu ngoại tiếp đa diện ABCD.MNP?
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 0 , SA=SB=SC, SD= 2a. Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 ; V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Cho hình chóp S.ABCD có SA ⊥ (ABCD), tứ giác ABCD là hình thang cân có đáy lớn AD gấp đôi đáy nhỏ BC và cạnh bên AB = BC. Mặt phẳng (P) đi qua A, vuông góc với SD và cắt SB, SC, SD lần lượt tại M, N, P. Khi đó ta có thể kết luận gì về tứ giác AMNP?
A. AMNP là một tứ giác nội tiếp (không có cặp cạnh đối nào song song).
B. AMNP là một hình thang vuông.
C. AMNP là một hình thang.
D. AMNP là một hình chữ nhật.