Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết Tính thể tích V của khối chóp S.ABC
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC. Mặt phẳng chứa AB và đi qua G cắt các cạnh, SC SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng 60 0 . Thể tích khối chóp S. ABMN bằng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5SM=2SC mặt phẳng ( α ) qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích
?
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S. ABCD. Gọi A 1 là trung điểm của cạnh SA và A 2 là trung điểm của đoạn A A 1 . Gọi (α) và (β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A 1 , A 2 . Mặt phẳng (α) cắt các cạnh SB, SC, SD lần lượt tại B 1 , C 1 , D 1 . Mặt phẳng (β) cắt các cạnh SB, SC, SD lần lượt tại B 2 , C 2 , D 2 . Chứng minh:
a) B 1 , C 1 , D 1 lần lượt là trung điểm của các cạnh SB, SC, SD.
b) B 1 B 2 = B 2 B , C 1 C 2 = C 2 C , D 1 D 2 = D 2 D .
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A . Mặt phẳng (P) đi qua A và vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SA=8a. ASC= 60 o Tính thể tích khối cầu ngoại tiếp đa diện ABCD.MNP?
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD) Tính tỉ số A M S A để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.
A. 2 3
B. 1 2
C. 1 3
D. 3 4