Cho hình chóp tứ giác S.ABCD có M, N, P, Q lần lượt là trung điểm các cạnh SA, SB, SC, SD. Biết khối chóp S.ABCD có thể tích bằng 16 a 3 . Tính thể tích khối chóp S.MNPQ theo a
A. 2 a 3
B. a 3
C. 8 a 3
D. 4 a 3
Cho hình chóp tứ giác S.ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Tỉ số là V S . M N P Q V S . A B C D là:
A. 1 8
B. 1 16
C. 3 8
D. 1 6
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là các điểm nằm trên các cạnh BC, SC, SD, AD sao cho MN//BS, NP//CD, MQ // CD. Những khẳng định nào sau đây là đúng?
1) PQ // SA
(2) PQ // MN
(3) tứ giác MNPQ là hình thang
(4) tứ giác MNPQ là hình bình hành
A. (4)
B. (1) và (3)
C. (2) và (3)
D. (2) và (4)
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Đường thẳng nào sau đây không song song với đường thẳng MN?
A. AB
B. CD
C. PQ
D. SC
Cho hình chóp S.ABCD. Một mặt phẳng không đi qua đỉnh nào của hình chóp cắt các cạnh SA,SB,SC,SD lần lượt tại A’,B’,C’,D’. Gọi O là giao điểm của AC và BD. Tìm mệnh đề đúng trong các mệnh đề sau:
A. Các đường thẳng A’C’,B’D’,SO đồng quy
B. Hai đường thẳng A’C’ và B’D’ cắt nhau còn hai đường thẳng A’C’ và SO chéo nhau
C. Các đường thẳng A’C’,B’D’,SO đồng phẳng
D. Các đường thẳng A’C’,B’D’,SO đôi một chéo nhau
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các đoạn SB, SD. Lấy điểm P trên cạnh SC sao cho SP = 3SC. Tìm giao tuyến của mp ( MNP ) với các mp (SAC), (SAB), (SAD), (ABCD)
Cho hình chóp S. ABCD. Gọi A 1 là trung điểm của cạnh SA và A 2 là trung điểm của đoạn A A 1 . Gọi (α) và (β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A 1 , A 2 . Mặt phẳng (α) cắt các cạnh SB, SC, SD lần lượt tại B 1 , C 1 , D 1 . Mặt phẳng (β) cắt các cạnh SB, SC, SD lần lượt tại B 2 , C 2 , D 2 . Chứng minh:
a) B 1 , C 1 , D 1 lần lượt là trung điểm của các cạnh SB, SC, SD.
b) B 1 B 2 = B 2 B , C 1 C 2 = C 2 C , D 1 D 2 = D 2 D .
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, các điểm M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Gọi V 1 , V 2 lần lượt là thể tích của S.ABC và O.MNPQ. Tính tỉ số V 1 V 2 .
A. V 1 V 2 = 1
B. V 1 V 2 = 2
C. V 1 V 2 = 4
D. V 1 V 2 = 8
cho hình chóp S.ABCD có đáy hình vuông cạnh a, SA = a, SA ⊥ (ABCD). Gọi H, K lần lượt là trung điểm của cạnh SB,SD; O là tâm hình vuông ABCD.
1/ Chứng minh: (SAB) ⊥ (SBC)
2/ Chứng minh: SC ⊥ (AHK)