Chọn D.
Phương pháp:
Xác định khoảng cách từ O đến 1 mặt bên của hình chóp và sử dụng các hệ thức lượng trong tam giác vuông để làm bài toán.
Cách giải:
Chọn D.
Phương pháp:
Xác định khoảng cách từ O đến 1 mặt bên của hình chóp và sử dụng các hệ thức lượng trong tam giác vuông để làm bài toán.
Cách giải:
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng d 1 . Gọi O là tâm của đáy ABC, d 1 là khoảng cách từ A đến mặt phẳng (SBC) và d 2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d 1 + d 2 .
A. d = 2 a 2 11
B. d = 2 a 2 33
C. d = 8 a 2 33
D. d = 8 a 2 11
Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và có thể tích V = a 3 3 6 Gọi J là điểm cách đều tất cả các mặt của hình chóp. Tính khoảng cách d từ J đến mặt phẳng đáy.
A. d = a 3 4
B. d = a 3 2
C. d = a 3 6
D. d = a 3 3
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a 3 . Gọi O là tâm đáy ABC, d 1 là khoảng cách từ A đến mặt phẳng (SBC) và d 2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d 1 + d 2
A. d= 2a 2 /11
B. d= 2a 2 /33
C. d= 8a 2 /33
D. d= 8a 2 /11
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a 3 . Gọi O là tâm của đáy ABC, d 1 là khoảng cách từ A đến mặt phẳng (SBC), d 2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d 1 + d 2 ?
A. d = 2 a 22 11 .
B. d = 2 a 22 33
C. d = 8 a 22 33
D. d = 8 a 22 11
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO=a (tham khảo hình vẽ bên). Khoảng cách từ O đến mặt phẳng (SCD) bằng
A. a 3
B. a 5 5
C. a 6 3
D. a 2 2
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO = a (tham khảo hình vẽ bên)
Khoảng cách từ O đến mặt phẳng (SCD) bằng
A. 2 a 2
B. 3 a
C. 5 a 5
D. 6 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O. Khoảng cách từ điểm O đến mặt phẳng (SCD) bằng a 14 7 và góc giữa đường thẳng SB với mặt đáy bằng 60°. Tính thể tích V của khối chóp S.ABC theo a.
A. V = 3 a 3 2 2
B. V = 3 a 3 2 4
C. V = 3 a 3 2 16
D. V = 9 a 3 2 4
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, mặt bên SAB đều và nằm trong mặt phẳng vuông góc với (ABCD). Khoảng cách từ điểm A đến mặt phẳng (SCD) theo a là:
A. a 21 21
B. a 21 7
C. 3 a 21 7
D. a 21 3