Cho khối chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA = a, SB = b, SC = c. Tính thể tích khối chóp S.ABC.
A. V = 1 6 a b c
B. V = 1 3 a b c
C. V = a b c
D. V = 1 2 a b c
Cho khối chóp S . A B C có S A , S B , S C đôi một vuông góc với nhau và S A = a , S B = b , S C = c . Tính thể tích khối chóp S . A B C .
Cho hình chóp S.ABC có các cạnh SA,SB,SC đôi một vuông góc với nhau. Biết SA = 3, SB = 4, SC 5, thể tích khối chóp S.ABC bằng
A. 20.
B. 30.
C. 10.
D. 60.
Cho khối chóp tam giác S.ABC có SA = 3, SB = 4, SC = 5 và SA, SB, SC đôi một vuông góc. Khối cầu ngoại tiếp tứ diện S.ABC có thể tích là:
A. 25 2 π
B. 125 2 π 3
C. 10 2 π 3
D. 5 2 π 3 3
Khối chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc với nhau, S A = a , S B = 3 a , . Thể tích khối chóp S.ABC tính theo a là
A. a 3
B. 4 a 3
C. 12 a 3
D. 2 a 3
Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng a 3 6 . Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
A. r = a 3 + 3
B. r = 2a
C. r = a 3 3 + 2 3
D. r = 2 a 3 3 + 2 3
Cho hình chóp tam giác S.ABC có SA=SB=SC= a 2 , tam giác ABC vuông cân tại A và BC=2a. Tính thể tích V của khối chóp S.ABC.
A. V = a 3 2
B. V = a 3 2 3
C. V = a 3
D. V = a 3 3
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA=a; SB=a 2 , SC=a 3 . Tính khoảng cách từ S đến mặt phẳng (ABC).
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, SA=SB=SC=a Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
A. a 3 3
B. a 3
C. a 3 24
D. a 3 12