Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = a , S A = S B = S C . Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 ° . Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A. a 3 3
B. a 2 2
C. a 2
D. a 3
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA = SC = a , SB = 2a . Gọi O là tâm của mặt cầu ngoại tiếp hình chóp S.ABC. Góc giữa hai mặt phẳng (SBO) và (SBC) bằng:
A. 300
B. 900
C. 600
D. 450
Cho hình chóp tam giác S.ABC với SA, SB, SC đôi một vuông góc và SA=SB=SC=a. Tính thể tích của khối chóp S. ABC.
Cho hình chóp S. ABC có SA, SB, SC đôi một vuông góc với nhau và SA=SB=SC=a. Sin của góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:
A. 6 3
B. 2 2
C. 1 3
D. 2 6
Cho hình chóp S.ABC có các góc tại đỉnh S cùng bằng 600, SA = a, SB = 2a, SC = 3a. Tính khoảng cách từ đỉnh A đến mặt phẳng (SBC)
Hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA=SB=SC. Gọi α là góc giữa mặt (SAB) và (ABC). Tính cos α
A. cos α = 1 2
B. cos α = 1 3
D. cos α = 1 6
D. cos α = 2 3
Cho hình chóp S.ABC có SA,SB,SC đôi một vuông góc và SA=SB=SC=a. Tính bán kính r của mặt cầu nội tiếp hình chóp S.ABC (mặt cầu nội tiếp hình chóp là mặt cầu tiếp xúc với tất cả các mặt của hình chóp và có tâm nằm trong hình chóp).
Hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Biết SA = SB = 2a, SC = a. Gọi G là trọng tâm ∆ ABC. Tính SG
A. SG = 1 3 a 2 3
B. SG = a 2
C. SG = 2 a 3
D. SG = a
Cho hình chóp S.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính theo a, b, c bán kính mặt cầu đó
A. 1 2 a 2 + b 2
B. 1 2 b 2 + c 2
C. 1 2 c 2 + a 2
D. 1 2 a 2 + b 2 + c 2