Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hình chiếu vuông góc của đỉnh S xuống mặt đáy nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau; góc giữa hai mặt phẳng S A B v à S A C là 60 ° ; góc giữa hai mặt phẳng S A B v à S A D là 45 ° Gọi α là góc giữa hai mặt phẳng S A B v à A B C D , tính cos α
A. cos α = 1 2
B. cos α = 2 2
C. cos α = 3 2
D. cos α = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Góc B A D ⏜ có số đo bằng 60 ° . Hình chiếu của S lên mặt phẳng (ABCD) là trọng tâm tam giác ABC .Góc giữa (ABCD) và (SAB) bằng 60 ° . Tính khoảng cách từ B đến mặt phẳng (SCD) .
A. 3 a 17 14
B. 3 a 7 14
C. 3 a 17 4
D. 3 7 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SA vuông góc với đáy (ABCD). Góc giữa đường thẳng SC và mặt phẳng (SAB) bằng α với tan α = 10 5 . Tính góc giữa đường thẳng SO và mặt phẳng (ABCD).
A. 60 °
B. 69 , 3 °
C. 90 °
D. 45 °
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và B A D ^ = 60 ° . Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng 60 0 . Khoẳng cách từ điểm B đến mặt phẳng (SCD) bằng
A. 21 a 14
B. 21 a 7
C. 3 7 a 14
D. 3 7 a 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60 0 . Tính theo a thể tích khối chóp S.ABCD
A. 3 a 3
B. a 3 6 9
C. a 3 6 3
D. 3 2 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O , A B = a , B C = a 3 . Tam giác SAO cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 60 0 . Tính khoảng cách giữa 2 đường thẳng SB và AC
A. a 3 2
B. 3 a 2
C. a 2
D. 3 a 4
Cho hình chóp S.ABC có đáy ABCD là hình chữ nhật tâm O, AB = a, B C = a 3 . Tam giác SAC cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng đáy (tam giác SAD có góc A nhọn). Biết góc giữa SD và mặt phẳng (ACD) bằng 60 ° . Tính thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA = a và SA vuông góc với đáy. Tang của góc giữa đường thẳng SO và mặt phẳng (SAB) bằng
A. 2
B. 2 2
C. 5
D. 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)
A. 5 5
B. 2 5 5
C. 1 2
D. 1